Metallurgical and Materials Transactions A

, Volume 49, Issue 5, pp 1641–1652 | Cite as

Linear Friction Welding of Dissimilar Materials 316L Stainless Steel to Zircaloy-4

  • P. Wanjara
  • B. S. Naik
  • Q. Yang
  • X. Cao
  • J. Gholipour
  • D. L. Chen


In the nuclear industry, there are a number of applications where the transition of stainless steel to Zircaloy is of technological importance. However, due to the differences in their properties there are considerable challenges associated with developing a joining process that will sufficiently limit the heat input and welding time—so as to minimize the extent of interaction at the joint interface and the resulting formation of intermetallic compounds—but still render a functional metallurgical bond between these two alloys. As such, linear friction welding, a solid-state joining technology, was selected in the present study to assess the feasibility of welding 316L stainless steel to Zircaloy-4. The dissimilar alloy welds were examined to evaluate their microstructural characteristics, microhardness evolution across the joint interface, static tensile properties, and fatigue behavior. Microstructural observations revealed a central intermixed region and, on the Zircaloy-4 side, dynamically recrystallized and thermomechanically affected zones were present. By contrast, deformation on the 316L stainless steel side was limited. In the intermixed region a drastic change in the composition was observed along with a local increase in hardness, which was attributed to the presence of intermetallic compounds, such as FeZr3 and Cr2Zr. The average yield (316 MPa) and ultimate tensile (421 MPa) strengths met the minimum strength properties of Zircaloy-4, but the elongation was relatively low (~ 2 pct). The tensile and fatigue fracture of the welds always occurred at the interface in the mode of partial cohesive failure.



The authors would like to acknowledge the financial support of National Science and Engineering Research Council of Canada (NSERC) and the Advanced Manufacturing Program of the National Research Council of Canada (NRC). Further, the authors are grateful for the assistance of M. Guerin and X. Pelletier of NRC for preparing the linear friction welds, supporting the infrared thermal imaging data acquisition during welding, preparing the samples for metallography, and machining of the tensile and fatigue samples. The authors would also like to thank A. Machin, Q. Li, C. Ma, J. Amankrah, and R. Churaman for easy access to the laboratory facilities of Ryerson University and their assistance in the experiments.


  1. 1.
    [1] E. Gutsmiedl and A. Scheuer: Physica B Condens Matter, 2002, Vol. 311, pp. 182–190.CrossRefGoogle Scholar
  2. 2.
    [2] F. Cattant, D. Crusset and D. Féron, Mater. Today, 2008, Vol. 11, pp. 32–37.CrossRefGoogle Scholar
  3. 3.
    [3] G. Perona, R. Sesini, W. Nicodemi and R. Zoja, J. Nucl. Mater., 1966, Vol. 18, pp. 278–291.CrossRefGoogle Scholar
  4. 4.
    [4] H.I. Shaaban, F.H. Hammad and J.L. Baron, J. Nucl. Mater., 1978, Vol. 71, pp. 277–285.CrossRefGoogle Scholar
  5. 5.
    [5] P.Gr. Lucuta, I. Pătru and F. Vasiliu, J. Nucl. Mater., 1981, Vol. 99, pp. 154–164.CrossRefGoogle Scholar
  6. 6.
    [6] M. Taouinet, S. Lebaili and N. Souami, Physics Procedia, 2009, Vol. 2, pp. 1231–1239.CrossRefGoogle Scholar
  7. 7.
    [7] A.A. Abou-Zahra and F.H. Hammad, Materialwissenschaft und Werkstofftechnik, 1979, Vol. 10, pp. 349–353.CrossRefGoogle Scholar
  8. 8.
    [8] H.I. Shaaban, F.H. Hammad and J.L. Baron, J. Nucl. Mater., 1978, Vol. 78, pp. 431–433.CrossRefGoogle Scholar
  9. 9.
    [9] M. Ahmad, J.I. Akhter, Q. Zaman, M.A. Shaikh, M. Akhtar, M. Iqbal and E. Ahmed, J. Nucl. Mater., 2003, Vol. 317, pp. 212–216.CrossRefGoogle Scholar
  10. 10.
    [10] J.I. Akhter, M. Ahmad, M. Iqbal, M. Akhtar and M.A. Shaikh, J. Alloys Compd., 2005, Vol. 399, pp. 96–100.CrossRefGoogle Scholar
  11. 11.
    [11] K. Bhanumurthy, J. Krishnan, G.B. Kale, R.K. Fotedar, A.R. Biswas and R.N. Arya, J. Mater. Process. Technol., 1995, Vol. 54, pp. 322–325.CrossRefGoogle Scholar
  12. 12.
    A. Munis, M. Ahmed, J.I. Akhter, G. Ali, and N.H. Tariq: Proceedings of the 10th International Symposium on Advanced Materials, Rawalpindi, Pakistan, 2007, pp. 157–59.Google Scholar
  13. 13.
    [13] D. Mukherjee and J.P. Panakkal, J. Mater. Sci. Lett., 1995, Vol. 14, pp. 1383–1385.CrossRefGoogle Scholar
  14. 14.
    [14] M. Ahmad, J. I. Akhter, M. Akhtar and M. Iqbal, J. Mater. Sci., 2007, Vol. 42, pp. 328–331.CrossRefGoogle Scholar
  15. 15.
    [15] M. Ahmad, J.I. Akhter, M.A. Shaikh, M. Akhtar, M. Iqbal and M.A. Chaudhry, J. Nucl. Mater., 2002, Vol. 301, pp. 118–121.CrossRefGoogle Scholar
  16. 16.
    [16] T.H. Hazlett, Welding J., 1962, Vol. 41, pp. 448s–450s.Google Scholar
  17. 17.
    [17] A.R. Shankar, S.S. Babu, M. Ashfaq, U.K. Mudali, K.P. Rao, N. Saibaba and B. Raj, J. Mater. Eng. Perform., 2009, Vol. 18, pp. 1272–1279.CrossRefGoogle Scholar
  18. 18.
    [18] J. Kilbride and D.F. Adams, Weld. Met. Fab., 1971, Vol. 39, pp. 26–35.Google Scholar
  19. 19.
    [19] J.C. Stinville, F. Bridier, D. Ponsen, P. Wanjara and P. Bocher, Int. J. Fatigue, 2015, Vol. 70, pp. 278–288.CrossRefGoogle Scholar
  20. 20.
    [20] P. Wanjara, E. Dalgaard, J. Gholipour, X. Cao, J. Cuddy and J.J. Jonas, Metall. Mater. Trans. A, 2014, Vol. 45, pp. 5138–5157.CrossRefGoogle Scholar
  21. 21.
    [21] E. Dalgaard, P. Wanjara, J. Gholipour and J.J. Jonas, Can. Metall. Q., 2012, Vol. 51, pp. 269–276.CrossRefGoogle Scholar
  22. 22.
    [22] E. Dalgaard, P. Wanjara, J. Gholipour, X. Cao and J.J. Jonas, Acta Mater., 2012, Vol. 60, pp. 770–780.CrossRefGoogle Scholar
  23. 23.
    [23] M. Smith, L. Bichler, J. Gholipour and P. Wanjara, Int. J. Adv. Manuf. Tech., 2017, Vol. 90, pp. 1931–1946.CrossRefGoogle Scholar
  24. 24.
    [24] A. Chamanfar, M. Jahazi, J. Gholipour, P. Wanjara and S. Yue, Mater. Charact., 2015, Vol. 104, pp. 149–161.CrossRefGoogle Scholar
  25. 25.
    [25] A. Chamanfar, M. Jahazi, J. Gholipour, P. Wanjara and S. Yue, Metall. Mater. Trans. A, 2013, Vol. 44, pp. 4230–4238.CrossRefGoogle Scholar
  26. 26.
    [26] O.T. Ola, O.A. Ojo, P. Wanjara and M.C. Chaturvedi, Adv. Mater. Res., 2011, Vol. 278, pp. 446–453.CrossRefGoogle Scholar
  27. 27.
    [27] A. Chamanfar, M. Jahazi, J. Gholipour, P. Wanjara and S. Yue, Mater. Sci. Eng. A, 2012, Vol. 555, pp. 117– 130.CrossRefGoogle Scholar
  28. 28.
    [28] K.R. Vishwakarma, O.A. Ojo, P. Wanjara and M.C. Chaturvedi, JOM, 2014, Vol. 66, pp. 2525–2534.CrossRefGoogle Scholar
  29. 29.
    [29] O.T. Ola, O.A. Ojo, P. Wanjara and M.C. Chaturvedi, Metall. Mater. Trans. A, 2011, Vol. 42, pp. 3761–3777.CrossRefGoogle Scholar
  30. 30.
    [30] A. Chamanfar, M. Jahazi, J. Gholipour, P. Wanjara and S. Yue, Mater. Des., 2012, Vol. 36, pp. 113–122.CrossRefGoogle Scholar
  31. 31.
    [31] O.T. Ola, O.A. Ojo, P. Wanjara and M.C. Chaturvedi, Metall. Mater. Trans. A, 2012, Vol. 43, pp. 921–933.CrossRefGoogle Scholar
  32. 32.
    [32] P. Wanjara, E. Dalgaard, J. Gholipour and J. Larose, Mater. Sci. Forum, 2012, Vol. 706-709, pp. 3022–3027.CrossRefGoogle Scholar
  33. 33.
    [33] P. Wanjara, E. Dalgaard, G. Trigo, C. Mandache, G. Comeau and J. J. Jonas, Can. Metall. Q., 2011, Vol. 50, pp. 350–359.CrossRefGoogle Scholar
  34. 34.
    [34] E. Dalgaard, P. Wanjara, G. Trigo, M. Jahazi, G. Comeau and J. J. Jonas, Can. Metall. Q., 2011, Vol. 50, pp. 360–370.CrossRefGoogle Scholar
  35. 35.
    [35] I. Bhamji, M. Preuss, R.J. Moat, P.L. Threadgill and A.C. Addison, Sci. Technol. Weld. Joining, 2012, Vol. 17, pp. 368–374.CrossRefGoogle Scholar
  36. 36.
    [36] P. Wanjara, J. Gholipour, K. Watanabe, K. Nezaki, Y. Tian and M. Brochu, Mater. Sci. Forum, 2017, Vol. 879, 2072–2077.CrossRefGoogle Scholar
  37. 37.
    [37] W. Li, A. Vairis, M. Preuss and T. Ma, International Materials Reviews, 2016, Vol. 61, pp. 71-100.CrossRefGoogle Scholar
  38. 38.
    [38] P. Wanjara and M. Jahazi, Metall. Mater. Trans. A, 2005, Vol. 36, pp. 2149–2164.CrossRefGoogle Scholar
  39. 39.
    ASTM E8M-16a, Standard test methods for tension testing of metallic materials (Metric).Google Scholar
  40. 40.
    ASTM E466-15: Standard practice for conducting force controlled constant amplitude axial fatigue tests of metallic materials.Google Scholar
  41. 41.
    ASME BPVC-III-2017: ASME boiler & pressure vessel code—section iii—rules for construction of nuclear power plant components.Google Scholar
  42. 42.
    ASTM E112-13: Standard test methods for determining average grain size.Google Scholar
  43. 43.
    [43] H.M Chung and T.F Kassner, J. Nucl. Mater. 84 (1979) 327–339.CrossRefGoogle Scholar
  44. 44.
    [44] R.K. Desu, H.N. Krishnamurthy, A. Balu, A.K. Gupta and S.K. Singh, J. Mater. Res. Technol., 2016, Vol. 5, pp. 13–20.CrossRefGoogle Scholar
  45. 45.
    [45] A. Vairis and M. Frost, Wear (Switzerland), 1998, Vol. 217, pp. 117–131.Google Scholar
  46. 46.
    [46] E. Dalgaard, F. Coghe, L. Rabet, M. Jahazi, P. Wanjara and J.J. Jonas, Adv. Mater. Res., 2010, Vol. 89-91, pp. 124–129.CrossRefGoogle Scholar
  47. 47.
    K.-D. Liss, U. Garbe, H. Li, T. Schambron, J.D. Almer, K. Yan: Adv. Eng. Mater, 11 (2009), 637–640.CrossRefGoogle Scholar
  48. 48.
    [48] C. Chauvy, P. Barbéris and F. Montheillet, Mater. Sci. Forum, 2004, Vol. 467-470, pp. 1151–1156.CrossRefGoogle Scholar
  49. 49.
    R.E. Logé, Y.B. Chastel, M.Y. Perrin, J.W. Signorelli, and R.A. Lebensohn: in Hot Extrusion of Zircaloy-4 Tubes: Induced Crystallographic Textures and Influence of the Initial Microstructure, Mathematical Modeling in Metal Processing and Manufacturing, P. Martin, W.J. Liu, S. MacEwen, Y. Verreman and J. Goldak, eds., The Metallurgical Society of CIM, Canada, 2000.Google Scholar
  50. 50.
    L. Whitmarsh: Review of Zircaloy-2 and Zircaloy-4 properties relevant to NS Savannah reactor design, ORNL-3281, Oak Ridge National Laboratory, Oak Ridge, 1962.Google Scholar
  51. 51.
    [51] B.M. Pande and R.P. Agarwala, J. Nucl. Mater., 1972, Vol. 42, pp. 43–48.CrossRefGoogle Scholar
  52. 52.
    [52] B.M. Pande, M.C. Naik and R.P. Agarwala, J. Nucl. Mater., 1968, Vol. 28, pp. 324–332.CrossRefGoogle Scholar
  53. 53.
    [53] C. Herzig and H. Eckseler, Zeit. Metal., 1979, Vol. 70, pp. 215–223.Google Scholar
  54. 54.
    ASM International Handbook Committee: Metals Handbook. Vol. 1—Properties and Selection: Irons, Steels, and High-Performance Alloys, 10th ed., ASM International, Metals Park, OH, 1990.Google Scholar
  55. 55.
    ASM International Handbook Committee: Metals Handbook. Vol. 2—Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 10th ed., ASM International, Metals Park, OH, 1990.Google Scholar
  56. 56.
    C. Evans: Micromechanisms and Micromechanics of Zircaloy-4, Doctoral Thesis Imperial College, London, UK, 2014.Google Scholar
  57. 57.
    [57] J.H. Kim, M.H. Lee, B.K. Choi and Y.H. Jeong, J. Nucl. Sci. Technol., 2007, Vol. 44, pp. 1275–1280.CrossRefGoogle Scholar
  58. 58.
    [58] A. Macwan and D.L. Chen, Mater. Des., 2015, Vol. 84, pp. 261–269.CrossRefGoogle Scholar
  59. 59.
    [59] W. Xu, L. Liu, Y. Zhou, H. Mori and D.L. Chen, Mater. Sci. Eng. A, 2013, Vol. 563, pp. 125–132.CrossRefGoogle Scholar
  60. 60.
    V.K. Patel, D.L. Chen, and S.D. Bhole: Theor. Appl. Mech. Lett. 2014, Vol. 4, pp. 041005-1–8.CrossRefGoogle Scholar
  61. 61.
    [61] S.H. Chowdhury, D.L. Chen, S.D. Bhole, X. Cao and P. Wanjara, Mater. Sci. Eng. A, 2013, Vol. 562, pp. 53–60.CrossRefGoogle Scholar
  62. 62.
    [62] A.D. Pelton, L. Leibowitz and R.A. Blomquist, J. Nucl. Mater., 1993, Vol. 201, pp. 218–224.CrossRefGoogle Scholar
  63. 63.
    [63] K. Zeng, M. Hämäläinen and R. Luoma, Z. Metallkd., 1993, Vol. 84, pp. 23–28.Google Scholar
  64. 64.
    [64] J. Bodega, J.F. Fernández, F. Leardini, J.R. Ares and C. Sánchez, J. Phys. Chem. Solids, 2011, Vol. 72, pp. 1334–1342.CrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Canada, as represented by the NRC Canada 2018

Authors and Affiliations

  • P. Wanjara
    • 1
  • B. S. Naik
    • 2
  • Q. Yang
    • 1
  • X. Cao
    • 1
  • J. Gholipour
    • 1
  • D. L. Chen
    • 2
  1. 1.National Research Council Canada - AerospaceMontrealCanada
  2. 2.Department of Mechanical and Industrial EngineeringRyerson UniversityTorontoCanada

Personalised recommendations