Finite Element Multi-scale Modeling of Chemical Segregation in Steel Solidification Taking into Account the Transport of Equiaxed Grains

  • Thi-Thuy-My Nguyen
  • Charles-André Gandin
  • Hervé Combeau
  • Miha Založnik
  • Michel Bellet
Article
  • 15 Downloads

Abstract

The transport of solid crystals in the liquid pool during solidification of large ingots is known to have a significant effect on their final grain structure and macrosegregation. Numerical modeling of the associated physics is challenging since complex and strong interactions between heat and mass transfer at the microscopic and macroscopic scales must be taken into account. The paper presents a finite element multi-scale solidification model coupling nucleation, growth, and solute diffusion at the microscopic scale, represented by a single unique grain, while also including transport of the liquid and solid phases at the macroscopic scale of the ingots. The numerical resolution is based on a splitting method which sequentially describes the evolution and interaction of quantities into a transport and a growth stage. This splitting method reduces the non-linear complexity of the set of equations and is, for the first time, implemented using the finite element method. This is possible due to the introduction of an artificial diffusion in all conservation equations solved by the finite element method. Simulations with and without grain transport are compared to demonstrate the impact of solid phase transport on the solidification process as well as the formation of macrosegregation in a binary alloy (Sn-5 wt pct Pb). The model is also applied to the solidification of the binary alloy Fe-0.36 wt pct C in a domain representative of a 3.3-ton steel ingot.

Notes

Acknowledgments

The authors gratefully acknowledged the financial support to this study from the following industrial partners: ArcelorMittal, Aubert & Duval, AscoIndustries and Aperam. The finite volume simulations were performed with software SOLID developed at Institut Jean Lamour, Université de Lorraine, Nancy, France. The authors thank Laurent Heyvaert for his help with the simulations with SOLID as well as Jacob Kennedy for his careful reading of the manuscript.

References

  1. 1.
    C. Beckermann: International Materials Review, 2002, vol. 47, pp. 243-262.CrossRefGoogle Scholar
  2. 2.
    T. Mazet: PhD thesis, Université de Lorraine, 1995.Google Scholar
  3. 3.
    J. Li, M. Wu, A. Ludwig, A. Kharicha: Int. J. Heat Mass Transf., 2014, vol. 72, pp. 668–679.CrossRefGoogle Scholar
  4. 4.
    E.J. Pickering, M. Holland, Ironmak. Steelmak., 2014, vol. 41, pp. 493–499.CrossRefGoogle Scholar
  5. 5.
    E. J. Pickering, C. Chesman, S. Al-Bermani, M. Holland, P. Davies, J. Talamantes-Silva: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1860–187.CrossRefGoogle Scholar
  6. 6.
    J. Ni, C. Beckermann: Metall. Mater. B, 1991, vol. 22B, pp. 349-361.CrossRefGoogle Scholar
  7. 7.
    J. Ni, C. Beckermann: J. Mater. Process. Manuf. Sci., 1993, vol. 2, pp. 217-231.Google Scholar
  8. 8.
    M. Založnik, H. Combeau: Computational Materials Science, 2010, vol. 48, pp. 1-10.CrossRefGoogle Scholar
  9. 9.
    C.Y. Wang, C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2754-2764.CrossRefGoogle Scholar
  10. 10.
    C.Y. Wang, C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2765-2783.CrossRefGoogle Scholar
  11. 11.
    M. Založnik, A. Kumar, H. Combeau: Computational Materials Science, 2010, vol. 48, pp. 11-21.CrossRefGoogle Scholar
  12. 12.
    A. Ludwig, M. Wu: Metall. Mater. Trans. A, 2002, 33A, pp. 3673-3683.CrossRefGoogle Scholar
  13. 13.
    M. Wu, J. Li, A. Ludwig, A. Kharicha: Computational Materials Science, 2013, vol. 79, pp. 830-840.CrossRefGoogle Scholar
  14. 14.
    M. Wu, J. Li, A. Ludwig, A. Kharicha: Computational Materials Science, 2014, vol. 92, pp. 267-285.CrossRefGoogle Scholar
  15. 15.
    A. Plotkowski, M.J.M. Krane: Computational Materials Science, 2016, vol. 124, pp. 238-248.CrossRefGoogle Scholar
  16. 16.
    W.S. Li, H.F. Shen, B.C. Liu: International Journal of Minerals, Metallurgy and Materials, 2012, vol. 19, pp. 787-794.CrossRefGoogle Scholar
  17. 17.
    Honghao Ge, Fengli Ren, Jun Li, Xiujun Han, Mingxu Xia, Jianguo Li: Metall. Mater. Trans. A, 2017, 48A, pp. 1139-1150.CrossRefGoogle Scholar
  18. 18.
    H. Combeau, M. Založnik, S. Hans, P.E. Richy: Metall. Mater. Trans. B., 2009, vol. 40B, pp. 289-304.CrossRefGoogle Scholar
  19. 19.
    H. Combeau, M. Založnik, M. Bedel: JOM, 2016, vol. 68, pp. 2198–2206.CrossRefGoogle Scholar
  20. 20.
    N. Leriche, H. Combeau, C.-A. Gandin, M. Založnik: IOP Conf. Ser. Mater. Sci. Eng., 2015, vol. 84, p. 12087.CrossRefGoogle Scholar
  21. 21.
    D. Li, X.-Q. Chen, P. Fu, X. Ma, H. Liu, Y. Chen, Y. Cao, Y. Luan, Y. Li: Nat. Commun., 2014, vol. 5, p. 5572.CrossRefGoogle Scholar
  22. 22.
    M. Wu, A. Kharicha, A. Ludwig: Mater. China, 2015, vol. 34, pp. 640–651.Google Scholar
  23. 23.
    W. Tu, H. Shen, B. Liu: ISIJ Int., 2014, vol. 54, no. 2, pp. 351–355.CrossRefGoogle Scholar
  24. 24.
    V. D. Fachinotti, S. Le Corre, N. Triolet, M. Bobadilla, M. Bellet: Int. J. Num. Meth. Eng., 2006, vol. 67, pp. 1341-1384.CrossRefGoogle Scholar
  25. 25.
    T. Koshikawa, M. Bellet, C.-A. Gandin, H. Yamamura, M. Bobadilla: Acta Materialia, 2017, 124, pp. 513-527.CrossRefGoogle Scholar
  26. 26.
    M. Rappaz, M. Bellet, M. Deville: Numerical Modeling in Materials Science and Engineering, Springer-Verlag, Berlin Heidelberg, 2003.CrossRefGoogle Scholar
  27. 27.
    I. Christie, D.F. Griffiths, A.R. Mitchell, O.C. Zienkiewicz: Int. J. Num. Meth. Engrg., 1976, vol. 10, pp. 1389-1396.CrossRefGoogle Scholar
  28. 28.
    J.C. Heinrich, P.S. Huyakorn, O.C. Zienkiewicz, A.R. Mitchell: Int. J. Num. Meth. Engrg, 1977, vol. 11, pp. 134-143.Google Scholar
  29. 29.
    T.J.R. Hughes: Int. J. Num. Meth. Engrg., 1978, vol. 12, pp. 1359-1365.CrossRefGoogle Scholar
  30. 30.
    T.J.R. Hughes, J.D. Atkinson: Variational Methods in the Mechanics of Solids, Pergamon Press, Oxford, 1980, pp. 387-391.CrossRefGoogle Scholar
  31. 31.
    I. Harari, T.J.R. Hughes: Computer Methods in Applied Mechanics and Engineering, 1992, vol. 93, pp. 411-454.CrossRefGoogle Scholar
  32. 32.
    I. Harari, T.J.R. Hughes: Computer Methods in Applied Mechanics and Engineering, 1994, vol. 115, pp. 165-191.CrossRefGoogle Scholar
  33. 33.
    F. Brezzi, A. Russo: Math. Models Methods Appl. Sci., 1994, vol. 4, pp. 571-587.CrossRefGoogle Scholar
  34. 34.
    D. Kuzmin, S. Turek: J. Comput. Physics, 2002, vol. 175, pp. 525-558.CrossRefGoogle Scholar
  35. 35.
    W. Cook, W.H. Cabot: J. Comput. Physics, 2003, vol. 195, pp. 594-601.CrossRefGoogle Scholar
  36. 36.
    P. Agarwal, B. K. O’Neill: Chem. Eng. Sci., 1998, vol. 43, pp. 2487-2499.CrossRefGoogle Scholar
  37. 37.
    E. Hachem, B. Rivaux, T. Kloczko, H. Digonnet, T. Coupez: J. Comput. Physics, 2010, vol. 229, pp. 8643–8665.CrossRefGoogle Scholar
  38. 38.
    D.J. Hebditch, J.D. Hunt: Metallurgical Transactions, 1974, vol. 5, pp. 1557–1564.CrossRefGoogle Scholar
  39. 39.
    N. Ahmad, J. Rappaz, J.-L. Desbiolles, T. Jalanti, M. Rappaz, H. Combeau, G. Lesoult, C. Stomp: Metallurgical and Materials Transactions A, 1998, vol. 29, pp. 617-630.CrossRefGoogle Scholar
  40. 40.
    H. Combeau, M. Bellet, Y. Fautrelle, D. Gobin, E. Arquis, O. Budenkova, B. Dussoubs, Y. Duterrail, A. Kumar, Ch.-A. Gandin, B. Goyeau, S. Mosbah, T. Quatravaux, M. Rady, M. Založnik: IOP Conference Series: Materials Science and Engineering, 2012, vol. 33, 012086.CrossRefGoogle Scholar
  41. 41.
    K.O. Tveito, M. Bedel, M. Založnik, H. Combeau, M. M’Hamdi: IOP Conf. Series: Materials Science and Engineering, 2011, vol. 27, 012040.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Thi-Thuy-My Nguyen
    • 1
  • Charles-André Gandin
    • 1
  • Hervé Combeau
    • 2
  • Miha Založnik
    • 2
  • Michel Bellet
    • 1
  1. 1.MINES ParisTech, PSL Research University, UMR CNRS 7635, CEMEFSophia AntipolisFrance
  2. 2.Institut Jean Lamour, CNRS – Université de LorraineNancyFrance

Personalised recommendations