The Observation of the Structure of M23C6/γ Coherent Interface in the 100Mn13 High Carbon High Manganese Steel

A Correction to this article was published on 06 December 2019

This article has been updated


The M23C6 carbides precipitate along the austenite grain boundary in the 100Mn13 high carbon high manganese steel after 1323 K (1050 °C) solution treatment and subsequent 748 K (475 °C) aging treatment. The grain boundary M23C6 carbides not only spread along the grain boundary and into the incoherent austenite grain, but also grow slowly into the coherent austenite grain. On the basis of the research with optical microscope, a further investigation for the M23C6/γ coherent interface was carried out by transmission electron microscope (TEM). The results show that the grain boundary M23C6 carbides have orientation relationships with only one of the adjacent austenite grains in the same planes: \( (\bar{1}1\bar{1})_{{{\text{M}}_{ 2 3} {\text{C}}_{ 6} }} //(\bar{1}1\bar{1})_{\gamma } , \) \( (\bar{1}11)_{{{\text{M}}_{ 2 3} {\text{C}}_{ 6} }} //(\bar{1}11)_{\gamma } ,[ 1 10]_{{{\text{M}}_{ 2 3} {\text{C}}_{ 6} }} //[ 1 10]_{\gamma } \). The flat M23C6/γ coherent interface lies on the low indexed crystal planes {111}. Moreover, in M23C6/γ coherent interface, there are embossments which stretch into the coherent austenite grain γ. Dislocations distribute in the embossments and coherent interface frontier. According to the experimental observation, the paper suggests that the embossments can promote the M23C6/γ coherent interface move. Besides, the present work has analyzed chemical composition of experimental material and the crystal structures of austenite and M23C6, which indicates that the transformation can be completed through a little diffusion for C atoms and a simple variant for austenite unit cell.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Change history

  • 06 December 2019

    In the original article there is an error in institution���s name for the affiliation of Zhenfeng Xu and Zhimin Ding. The correct institution is Dalian Jiaotong University.

  • 06 December 2019

    In the original article there is an error in institution���s name for the affiliation of Zhenfeng Xu and Zhimin Ding. The correct institution is Dalian Jiaotong University.


  1. 1.

    Hua Wu, Shan-shan Xu, and Huai Wang: Heat Treat. Met. 2009, vol. 34(9), pp. 78-82.

    Google Scholar 

  2. 2.

    Zhang ZZ: High manganese steel. Metallurgy Process Publication, Beijing, 2002.

    Google Scholar 

  3. 3.

    He L, Jin ZH, Lu JD: Trans Metal Heat Treat. 2000, vol. 21(3), pp. 51-4.

    Google Scholar 

  4. 4.

    Gavriljuk VG, Tyshchenko AI, Razumov ON: Mater Sci Eng A, 2006, vol. 420(1-2), pp. 47-54.

    Article  Google Scholar 

  5. 5.

    Sherstyuk AA, Kurbatov MI, Tumanskii BF: Metal Sci Heat Treat, 1970, vol. 12(3), pp. 48-9.

    Article  Google Scholar 

  6. 6.

    Krasikov KI, Strok LP, Shaurova NK: Metal Sci Heat Treat, 1977, vol. 19(3), pp. 7-10.

    Article  Google Scholar 

  7. 7.

    Meng ZB, Hu GL, Chen Y: Metal Heat Treat. 1997, vol. 12(1), pp. 31-3.

    Google Scholar 

  8. 8.

    I.I. Kleshcheva and E.A. Shur: Metalloved. Term. Obrab. Met., 1990, vol. 32(1), pp. 23-7.

    Google Scholar 

  9. 9.

    Ding ZM, Wang SJ, Yang F, Yan Y: Trans Mater Heat Treat. 2007, vol. 28(Suppl), pp. 29-33.

    Google Scholar 

  10. 10.

    Yaer X, Shimizu K, Matsumoto H: Wear. 2008, vol. 264 (11-12), pp. 947-57.

    Article  Google Scholar 

  11. 11.

    Linnan Dong, Zhimin Ding, Bo Liang: Phase Transitions, 2015, vol. 88 (11), pp. 1054-61.

    Article  Google Scholar 

  12. 12.

    ZF Xu, Z Ding, L Dong, B Liang. Metall. Trans. A, 2016, vol. 47A, pp. 4862-8.

    Article  Google Scholar 

  13. 13.

    Zhimin Ding, Bo Liang, Ruirong Zhao, Chunhuan Chen: Metal Sci Heat Treat, 2015, vol. 57, pp.18-21.

    Article  Google Scholar 

  14. 14.

    Dusevich VM, Shur EA, Semenov IA: Metal Sci Heat Treat,1989, vol. 31(9), pp. 698-701.

    Article  Google Scholar 

  15. 15.

    Gruzin PL, Grigorkin VI, Mural VV: Metal Sci Heat Treat. 1969, vol. 11(1), pp. 5-8.

    Article  Google Scholar 

  16. 16.

    Chircă, D.: Metalurgia, 1987, vol. 39(4), pp. 173-7.

    Google Scholar 

  17. 17.

    Hsu CC (2008) A Study of Aging Transformation in a Fe-20Mn-05C Alloy. National Taiwan University of Science and Technology, Taipei.

    Google Scholar 

  18. 18.

    Sue WY: Phase transformations during aging processes in an Fe-301Mn-064C alloy. Taipei: National Taiwan University of Science and Technology, 2010.

    Google Scholar 

  19. 19.

    Leigang Zheng, Xiaoqiang Hu: Materials and Design, 2015, vol. 78, pp. 42-50.

    Article  Google Scholar 

  20. 20.

    Kenji Kaneko, Tatsuya Fukunaga: Scripta Materialia, 2011, vol. 65, pp. 509-12.

    Article  Google Scholar 

  21. 21.

    Li Jiang, Rui Hu, Hongchao Kou: Materials Science and Engineering A, 2012, vol. 536, pp. 37-44.

    Article  Google Scholar 

  22. 22.

    YS Lim, JS Kim: J. Nucl. Mater. 2004, vol. 335, pp. 108-114.

    Article  Google Scholar 

  23. 23.

    S. Hirth, G. Gottstein: Acta Mater, 1998, vol. 46, pp. 3975-84.

    Article  Google Scholar 

  24. 24.

    Singhal LK, Martin JW: Acta Metall, 1967, vol. 15, pp. 1603-10.

    Article  Google Scholar 

  25. 25.

    W. E. Voice, R. G. Faulkner: Journal of materials science, 1987, vol. 22, pp. 4221-32.

    Article  Google Scholar 

  26. 26.

    T-H Lee, H-Y Ha, S-J Kim: Metall. Mater. Trans. A, 2011, 42A, pp. 3543-8.

    Article  Google Scholar 

  27. 27.

    Hui Li, Shuang Xia, Bangxin Zhou, Jianchao Peng: MATERIALS CHARACTERIZATION, 2013, vol. 81, pp. 1-6.

    Article  Google Scholar 

  28. 28.

    Hong HU, Rho BS, Nam SW: Mater Sci Eng A, 2001, vol. 318A, pp. 285-92.

    Article  Google Scholar 

  29. 29.

    Hong HU, Nam SW: Mater Sci Eng A, 2002, vol. 332A, pp. 255-61.

    Article  Google Scholar 

  30. 30.

    Lewis M. H, Hattersley B: Acta Metall, 1965, vol. 13, pp. 1159-68.

    Article  Google Scholar 

  31. 31.

    Beckitt FR, Clark BR: Acta Metall., 1967, vol.15, pp. 113-29.

    Article  Google Scholar 

  32. 32.

    Goldschmidt HJ (1948) J. Iron Steel Inst. 160(4):345.

    Google Scholar 

Download references


The authors are grateful to Professor Zhiquan LIU and Dr. Shuang GAO of Institute of Metal Research, Chinese Academy of Sciences for the valuable guidance and assistance in this work. This work was supported by the Program for Liaoning Excellent Talents in University within the Project No. LR2012014, the Technology Promotion Program from the Ministry of Railway of China within the Project No. 2012G011-D, and Science and Technology Project of Dalian within the Project No. 2013A16GX119.

Author information



Corresponding author

Correspondence to Zhimin Ding.

Additional information

Manuscript submitted August 5, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Ding, Z. & Liang, B. The Observation of the Structure of M23C6/γ Coherent Interface in the 100Mn13 High Carbon High Manganese Steel. Metall Mater Trans A 49, 836–841 (2018).

Download citation