Skip to main content
Log in

Modeling of Metallic Glass Matrix Composites Under Compression: Microstructure Effect on Shear Band Evolution

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The relationship among processing, microstructure, and mechanical performance is the most important for metallic glass matrix composites (MGCs). Numerical modeling was performed on the shear banding in MGCs, and the impacts of particle concentration, morphology, agglomerate, size, and thermal residual stress were revealed. Based on the shear damage criterion, the equivalent plastic strain acted as an internal state variable to depict the nucleation, growth, and coalescence of shear bands. The element deletion technique was employed to describe the process of transformation from shear band to micro-crack. The impedance effect of particle morphology on the propagation of shear bands was discussed, whereby the toughening mechanism was clearly interpreted. The present work contributes to the subsequent strengthening and toughening design of MGCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.W. Qiao, H.L. Jia, and P.K. Liaw: Mater. Sci. Eng. R., 2016, vol. 100, pp. 1–69.

    Article  Google Scholar 

  2. J.S.C. Jang, T.H. Li, P.H. Tsai, J.C. Huang, and T.G. Nieh: Intermetallics, 2015, vol. 64, pp. 102–05.

    Article  Google Scholar 

  3. J.B. Li, J.S.C. Jang, S.R. Jian, K.W. Chen, J.F. Lin, and J.C. Huang: Mater. Sci. Eng. A., 2001, vol. 528, pp. 8244–8.

    Article  Google Scholar 

  4. X.H. Du, J.C. Huang, H.M. Chen, H.S. Chou, Y.H. Lai, K.C. Hsieh, J.S.C. Jang, and P.K. Liaw: Intermetallics, 2009, vol. 17, pp. 607–13.

    Article  Google Scholar 

  5. H.M. Chen, X.H. Du, J.C. Huang, J.S.C. Jang, and T.G. Nieh: Intermetallics, 2009, vol. 17, pp. 330–5.

    Article  Google Scholar 

  6. P.J. Hsieh, L.C. Yang, H.C. Su, C.C. Lu, and J.S.C. Jang: J. Alloy Compd., 2010, vol. 504, pp. 98–101.

    Article  Google Scholar 

  7. M.E. Siegrist, and J. F. Löffler: Scripta Mater., 2007, vol. 56, pp. 1079–82.

    Article  Google Scholar 

  8. J.L. Wu, Y. Pan, X.Z. Li, and X.F. Wang: Mater. Design, 2015, vol. 75, pp. 32–9.

    Article  Google Scholar 

  9. D.K. Balch, E. Üstündag, and D.C. Dunand: J. Non-Cryst. Solids, 2003, vol. 317, pp. 176–80.

    Article  Google Scholar 

  10. C.N. Kuo, J.C. Huang, X.H. Du, X.J. Liu, and T.G. Nieh: J. Alloy Compd., 2014, vol. 586, pp. S14–9.

    Article  Google Scholar 

  11. X.D. Wang, R.T. Qu, Z.Q. Liu, and Z.F. Zhang: J. Alloy Compd., 2017, vol. 695, pp. 2016–22.

    Article  Google Scholar 

  12. Y.P. Jiang, and K. Qiu: Mater. Design, 2015, vol. 65, pp. 410–6.

    Article  Google Scholar 

  13. Y.P. Jiang, X.P. Shi, and K. Qiu: Mater. Design, 2015, vol. 77, pp. 32–40.

    Article  Google Scholar 

  14. S.B. Biner: Acta Mater., 2006, vol. 54, pp. 139–50.

    Article  Google Scholar 

  15. E.R. Homer, and C.A. Schuh: Acta Mater., 2009, vol. 57, pp. 2823–33.

    Article  Google Scholar 

  16. H.Y. Zhang, and G.P. Zheng: J. Alloy Compd., 2014, vol. 586, pp. S262–6.

    Article  Google Scholar 

  17. M. Bansal, I.V. Singh, B.K. Mishra, K. Sharma, and I.A. Khan: J. Nucl. Mater., 2017, vol. 487, pp. 143-57.

    Article  Google Scholar 

  18. ABAQUS theory manual (HKS inc., 2010), pp. 510.

  19. H. Hooputra, H, Gese, H. Dell, and H. Werner: Int. J. Crashworthiness, 2004, vol. 9, pp. 449–64.

    Article  Google Scholar 

  20. Y.P. Jiang, L.G. Sun, Q.Q. Wu, and K. Qiu: J. Non-Cryst. Solids, 2017, vol. 459, pp. 26–31.

    Article  Google Scholar 

  21. H.L. Ma, G.K. Hu, and Z.P. Huang: Mech. Mater., 2004, vol. 36, pp. 359–68.

    Article  Google Scholar 

  22. B. Sarac, J. Wilmers, and S. Bargmann: Mater. Lett., 2014, vol. 134, pp. 306–10.

    Article  Google Scholar 

  23. F. Abdeljawad, and M. Haataja: Phys. Rev. Lett., 2010, vol. 105, pp. 125503.

    Article  Google Scholar 

  24. P.J. Hsieh, L.C. Yang, H.C. Su, C.C. Lu, and J.S.C. Jang: J. Alloy Compd., 2010, vol. 504, pp. 98–101.

    Article  Google Scholar 

  25. J.S.C. Jang, J.Y. Cou, T.H. Li, J.C. Huang, and T.G. Nieh: Intermetallics, 2010, vol. 18, pp. 451–8.

    Article  Google Scholar 

  26. J.S.C. Jang, J.B. Li, S.L. Lee, Y.S. Chang, S.R. Jian, J.C. Huang, and T.G. Nieh: Intermetallics, 2012, vol. 30, pp. 25–9.

    Article  Google Scholar 

  27. Y. Wu, H. Wang, H.H. Wu, Z.Y. Zhang, X.D. Hui, G.L. Chen, D. Ma, X.L. Wang, and Z.P. Lu: Acta Mater., 2011, vol. 59, pp. 2928–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunpeng Jiang.

Additional information

Manuscript submitted June 7, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Qiu, K., Sun, L. et al. Modeling of Metallic Glass Matrix Composites Under Compression: Microstructure Effect on Shear Band Evolution. Metall Mater Trans A 49, 417–424 (2018). https://doi.org/10.1007/s11661-017-4412-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4412-3

Navigation