Skip to main content

Advertisement

Log in

In situ Weak Magnetic-Assisted Thermal Stress Field Reduction Effect in Laser Welding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

For decades, post-welding magnetic treatment has been used to reduce residual stress of welds by improving the crystal structure of solid-state welds. In this paper, we propose a new magnetic treatment method, which can reduce the time-dependent thermal stress field in situ and reduce the final residual stress of welds by simply exerting an assisted weak magnetic field perpendicular to the welding direction and workpiece during laser welding. A new finite-element model is developed to understand the thermal–mechanical physical process of the magnetic-assisted laser welding. For the widely used 304 austenite stainless steel, we theoretically observed that this method can reduce around 10 pct of the time-dependent thermal stress field, and finally reduce approximately 20 MPa of residual stress near the heat-affected zone with a 415-mT magnetic field for typical welding process parameters. A new mechanism based on magneto-fluid dynamics is proposed to explain the theoretical predications by combining high-speed imaging experiments of the transient laser welding process. The developed method is very simple but surprisingly effective, which opens new avenues for thermal stress reduction in laser welding of metals, particularly heat-sensitive metallic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Reference

  1. J.F. Lancaster: Phys. Technol., 1984, vol. 15, pp. 73–79.

    Article  Google Scholar 

  2. L. Lindgren, and L. Karlsson: Int. J. Numer. Methods Eng., 1998, vol. 25, pp. 635–55.

    Article  Google Scholar 

  3. S.A. Tsirkas, P. Papanikos, T. Kermanicis: J. Mater. Process. Technol., 2003, vol. 134, pp. 59–69.

    Article  Google Scholar 

  4. T.L. Teng, P.H. Chang, and W.C. Tseng: Comput. Struct., 2003, vol. 81, pp. 273–86.

    Article  Google Scholar 

  5. X. Cheng, J.W. Fisher, H.J. Prask, T. Gnaupel-Herold, B.T. Yen, and S. Roy: Int. J. Fatigue, 2003, vol. 25, pp. 1259–69.

    Article  Google Scholar 

  6. J. Lin, S. Huang, Z.P. Cai, H.Y. Zhao, and A.L. Lu: Chin. J. Mech. Eng., 2006, pp. 208–13.

  7. A.L. Lu, F. Tang, X.J. Luo, J.F. Mei, and H.Z. Fang: J. Mater. Process. Technol., 1998, vol. 74, pp. 259–62.

    Article  Google Scholar 

  8. J. Lin, H.Y. Zhao, Z.P. Cai, and A.L. Lu: J. Mater. Eng., 2005.

  9. Z.P. Cai, J. Lin, H.Y. Zhao, and A.L. Lu: Metall. Mater. Trans. A, 2015, vol. 398, pp. 344–48.

    Google Scholar 

  10. M. Kern, P. Berger, and H. Hugel: Weld. J., 2000, pp. 72–78.

  11. M. Bachmann, V. Avilov, A. Gumenyuk, and M. Rethmeier: Phys. Proc., 2014, vol. 56, pp. 515–24.

    Article  Google Scholar 

  12. V. Avilov, A. Gumenyuk, M. Lammers, and M. Rethmeier: Sci. Technol. Weld. Join., 2012, vol. 17, pp. 128–33.

    Article  Google Scholar 

  13. G. Ambrosy, P. Berger, H. Hugel, and D. Lindenau: Proc. of SPIE.

  14. M. Bachmann, V. Avilov, A. Gumenyuk, and M. Rethmier: Int. J. Thermal. Sci., 2016, vol. 101, pp. 24–34.

    Article  Google Scholar 

  15. M. Bachmann, V. Avilov, A. Gumenyuk, and M. Rethmeier: Int. J. Heat. Mass. Trans., 2013, vol. 60, pp. 309–21.

    Article  Google Scholar 

  16. H.C. Tse, H.C. Man, and T.M. Yue: Opt. Laser Technol., 1999, vol. 31, pp. 363–68.

    Article  Google Scholar 

  17. Y. Peng, W.Z. Chen, C. Wang, G. Bao, and Z.L. Tian: J. Phys. D: Appl. Phys., 2001, vol. 34, pp. 3145–49.

    Article  Google Scholar 

  18. J. Kim and Y. Peng: KSME Int. J., 2000, vol. 14, pp. 177–87.

    Article  Google Scholar 

  19. C. Tix and G. Simon: J. Phys. D: Appl. Phys., 1993, vol. 26.

  20. Z. Sun, A.S. Salminen and T.J.I. Moisio: J. Mater. Sci. Lett., 1993, vol. 12, pp. 1131–33.

    Article  Google Scholar 

  21. A. Schneider, V. Avilov, A. Gunmenyuk, and M. Rethmeier: Phys. Procedia, 2013, vol. 41.

  22. G. Ambrosy, V. Avilov, P. Berger, and H. Hugel: Proc. SPIE-Int. Soc. Opt. Eng., 2007.

  23. A. Falvo, F. M. Furgiule, C. Maletta: J. Mater. Sci. Eng. A, 2005, vol. 412, pp. 235–400.

    Article  Google Scholar 

  24. T. A. Mai, A. C. Spowage: J. Mater. Sci. Eng. A, 2004, vol. 374, pp. 224–33.

    Article  Google Scholar 

  25. S. A. Tsirkas, P. Papanikos, T.H. Kermanidis: J. Mater. Process. Technol., 2003, vol. 134, pp. 59–69.

    Article  Google Scholar 

  26. D.A. Deng: Mater. Des., 2009, vol. 30, pp. 359–66.

    Article  Google Scholar 

  27. R.W. Lewis, P. Nithiarasu, and K.N. Seetharamu: Fundamentals of the Finite Element Method for Heat and Fluid Flow, 1st ed., Wiley, Chichester, 2004.

    Book  Google Scholar 

  28. Y. Ueda and Y. Yamakawa: Trans. Jpn. Weld. Soc. 1971.

  29. S. Wu, H.Y. Zhao, Y. Wang, and X.H. Zhang: Trans. China Weld. Inst., 2004, vol. 25, pp. 91–94.

    Google Scholar 

  30. A. Matsunawa, N. Seto, J. Kim, M. Mizutani, S. Ktayama: J. Laser Appl., 2000, vol. 3888, pp. 247–54.

    Google Scholar 

  31. Y. Kawahito, M. Mizutani, and S. Katayama: Sic. Technol. Weld. Join, 2009, vol. 14, pp. 288–94.

    Article  Google Scholar 

  32. S. Pang, L. Chen, J. Zhou, Y. Yin, and Tao Chen: J. Phys. D: Appl. Phys., 2011, vol. 44.

  33. S. Pang, X. Chen, J. Zhou, X. Shao, and C. Wang: Opt. Laser. Eng., 2015, vol. 74, pp. 47–58.

    Article  Google Scholar 

  34. R. Rai, J.W. Elmer, T.A. Palmer, and T. DebRoy: J. Phys. D: Appl. Phys., 2007, vol. 40.

  35. X. He, P.W. Furschbah, and T. DebRoy: J. Phys. D: Appl. Phys., 2003, vol. 36, pp. 1388.

    Article  Google Scholar 

  36. S. Pang, W. Chen, and W. Wang: Metall. Mater. Trans. A, 2014, vol. 45, pp. 2808–18.

    Article  Google Scholar 

  37. M. Sathiyamoorthy, and A. Chamkha: Int. J. Therm. Sci., 2010, vol. 49, pp. 1856–65.

    Article  Google Scholar 

  38. R. Rai, S.M. Kelly, R.P. Martukanitz, and T. Debroy: Metall. Mater. Trans. A, 2008, vol. 39, pp. 98–112.

    Article  Google Scholar 

  39. X.Z. Jin, L.J. Li, and Y. Zhang: Int. J. Heat. Mass. Trans., 2003, vol. 46, pp. 15–22.

    Article  Google Scholar 

  40. Q. Tang, S. Pang, B. Chen, H. Suo, and J. Zhou: Int. J. Heat. Mass. Trans., 2014, vol. 78, pp. 203–15.

    Article  Google Scholar 

  41. V.G. Navas, J. Leunda, J. Lambarri, and C. Sanz: Metall. Mater. Trans. A, 2015, vol. 46, pp. 3140–56.

    Article  Google Scholar 

  42. S. Pang, W. Chen, J. Zhou, and D. Liao: J. Mater. Process. Technol., 2015, vol. 217, pp. 131–43.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyong Pang.

Additional information

Manuscript submitted February 08, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Pang, S., Shao, X. et al. In situ Weak Magnetic-Assisted Thermal Stress Field Reduction Effect in Laser Welding. Metall Mater Trans A 49, 198–209 (2018). https://doi.org/10.1007/s11661-017-4408-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4408-z

Navigation