Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 3, pp 772–781 | Cite as

Contribution of Lattice Distortion to Solid Solution Strengthening in a Series of Refractory High Entropy Alloys

  • H. Chen
  • A. Kauffmann
  • S. Laube
  • I.-C. Choi
  • R. Schwaiger
  • Y. Huang
  • K. Lichtenberg
  • F. Müller
  • B. Gorr
  • H.-J. Christ
  • M. Heilmaier
Topical Collection: Next Generation Superalloys and Beyond
Part of the following topical collections:
  1. Materials for High-Temperature Applications: Next Generation Superalloys and Beyond

Abstract

We present an experimental approach for revealing the impact of lattice distortion on solid solution strengthening in a series of body-centered-cubic (bcc) Al-containing, refractory high entropy alloys (HEAs) from the Nb-Mo-Cr-Ti-Al system. By systematically varying the Nb and Cr content, a wide range of atomic size difference as a common measure for the lattice distortion was obtained. Single-phase, bcc solid solutions were achieved by arc melting and homogenization as well as verified by means of scanning electron microscopy and X-ray diffraction. The atomic radii of the alloying elements for determination of atomic size difference were recalculated on the basis of the mean atomic radii in and the chemical compositions of the solid solutions. Microhardness (μH) at room temperature correlates well with the deduced atomic size difference. Nevertheless, the mechanisms of microscopic slip lead to pronounced temperature dependence of mechanical strength. In order to account for this particular feature, we present a combined approach, using μH, nanoindentation, and compression tests. The athermal proportion to the yield stress of the investigated equimolar alloys is revealed. These parameters support the universality of this aforementioned correlation. Hence, the pertinence of lattice distortion for solid solution strengthening in bcc HEAs is proven.

Notes

Acknowledgments

The financial support by the Deutsche Forschungsgemeinschaft (DFG), Grant No. HE 1872/31-1, is gratefully acknowledged. One of the authors (AK) thanks the Carl Zeiss Foundation for financial support via a Postdoctoral Grant. IC acknowledges the financial support by the Alexander von Humboldt Foundation. The authors acknowledge the chemical analysis by ICP-OES at the Institute for Applied Materials (IAM-AWP), Karlsruhe Institute of Technology (KIT). We also thank D. Schliephake, U. Hauf, P. Eyer, F. Hinrichs, and M. Swetik for experimental support. We thank Professor W.A. Curtin (EPFL, Lausanne, Switzerland) for fruitful discussions and suggestions. This work was partly carried out with the support of the Karlsruhe Nano Micro Facility (KNMF, www.knmf.kit.edu), a Helmholtz Research Infrastructure at Karlsruhe Institute of Technology (KIT, www.kit.edu).

References

  1. 1.
    J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299–303.CrossRefGoogle Scholar
  2. 2.
    D.B. Miracle and O.N. Senkov: Acta Mater., 2017, vol. 122, pp. 448–511.CrossRefGoogle Scholar
  3. 3.
    C. Varvenne, G.P.M. Leyson, M. Ghazisaeidi, and W.A. Curtin: Acta Mater., 2017, vol. 124, pp. 660–83CrossRefGoogle Scholar
  4. 4.
    R.L. Fleischer: Acta Metall., 1961, vol. 9, pp. 996–1000.CrossRefGoogle Scholar
  5. 5.
    R.L. Fleischer: Acta Metall., 1963, vol. 11, pp. 203–09.CrossRefGoogle Scholar
  6. 6.
    R. Labusch: Physica Status Solidi (b), 1970, vol. 41, pp. 659–69.CrossRefGoogle Scholar
  7. 7.
    I. Toda-Caraballo: Scripta Mater., 2017, vol. 127, pp. 113–17.CrossRefGoogle Scholar
  8. 8.
    I. Toda-Caraballo and P.E.J. Rivera-Díaz-del-Castillo: Acta Mater., 2015, vol. 85, pp. 14–23.CrossRefGoogle Scholar
  9. 9.
    N.L. Okamoto, K. Yuge, K. Tanaka, H. Inui, and E.P. George: AIP Adv., 2016, vol. 6, p. 125008.CrossRefGoogle Scholar
  10. 10.
    C. Varvenne, A. Luque, and W.A. Curtin: Acta Mater., 2016, vol. 118, pp. 164–76.CrossRefGoogle Scholar
  11. 11.
    Z. Wu, H. Bei, G.M. Pharr, and E.P. George: Acta Mater., 2014, vol. 81, pp. 428–41.CrossRefGoogle Scholar
  12. 12.
    S.I. Rao, C. Varvenne, C. Woodward, T.A. Parthasarathy, D. Miracle, O.N. Senkov, and W.A. Curtin: Acta Mater., 2017, vol. 125, pp. 311–20.CrossRefGoogle Scholar
  13. 13.
    A. Fernandez-Caballero, J.S. Wrobel, P.M. Mummery and D. Nguyen-Manh: arXiv preprint http://arXiv:1705.01844.
  14. 14.
    H. Chen, A. Kauffmann, B. Gorr, D. Schliephake, C. Seemüller, J.N. Wagner, H.-J. Christ, and M. Heilmaier: J. Alloys Compds., 2016, vol. 661, pp. 206–15.CrossRefGoogle Scholar
  15. 15.
    B. Gorr, F. Mueller, H.-J. Christ, T. Mueller, H. Chen, A. Kauffmann, and M. Heilmaier: J. Alloys Compd., 2016, vol. 688, Part B, pp. 468–77.CrossRefGoogle Scholar
  16. 16.
    B. Gorr, F. Müller, M. Azim, H.-J. Christ, T. Müller, H. Chen, A. Kauffmann, and M. Heilmaier: Oxid. Met., 2017, vol. 88, pp. 1–11. CrossRefGoogle Scholar
  17. 17.
    B. Gorr, M. Azim, H.-J. Christ, T. Mueller, D. Schliephake, and M. Heilmaier: J. Alloys Compds., 2015, vol. 624, pp. 270–78.CrossRefGoogle Scholar
  18. 18.
    B. Gorr, M. Azim, H.-J. Christ, H. Chen, D.V. Szabo, A. Kauffmann, and M. Heilmaier: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 961–70.CrossRefGoogle Scholar
  19. 19.
    J.B. Nelson and D.P. Riley: Proc. Phys. Soc., 1945, vol. 57, p. 160.CrossRefGoogle Scholar
  20. 20.
    M.J. Mayo and W.D. Nix: Acta Metall., 1988, vol. 36, pp. 2183–92.CrossRefGoogle Scholar
  21. 21.
    I.-C. Choi, C. Brandl and R. Schwaiger: Acta Mater., 2017, Vol. 140, pp. 107-15.CrossRefGoogle Scholar
  22. 22.
    K.L. Johnson: Contact Mechanics, Cambridge University Press, Cambridge, United Kingdom, 1987.Google Scholar
  23. 23.
    K. Lichtenberg, E. Orsolani-Uhlig, R. Rössler and K.A. Weidenmann: J. Compos. Mater., 2017,  https://doi.org/10.1177/0021998317699867.
  24. 24.
    O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward: J. Alloys Compds., 2011, vol. 509, pp. 6043–48.CrossRefGoogle Scholar
  25. 25.
    G. Chiarotti: in Structure, G. Chiarotti, ed., Springer-Verlag, Berlin/Heidelberg, 1993, vol. 24a, pp. 21–26.CrossRefGoogle Scholar
  26. 26.
    N. Zárubová: Scripta Metall., 1977, vol. 11, pp. 441–44.CrossRefGoogle Scholar
  27. 27.
    N. Zárubová and B. Šesták: Physica Status Solidi (a), 1975, vol. 30, pp. 365–74.CrossRefGoogle Scholar
  28. 28.
    A. Seeger: Z. Metallkd., 2002, vol. 93, pp. 760–77.CrossRefGoogle Scholar
  29. 29.
    V. Maier, A. Hohenwarter, R. Pippan, and D. Kiener: Scripta Mater., 2015, vol. 106, pp. 42–45.CrossRefGoogle Scholar
  30. 30.
    B. Šesták and A. Seeger: Z. Metallkd., 1978, vol. 69, pp. 195–202.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • H. Chen
    • 1
  • A. Kauffmann
    • 1
  • S. Laube
    • 1
  • I.-C. Choi
    • 2
  • R. Schwaiger
    • 2
  • Y. Huang
    • 1
  • K. Lichtenberg
    • 1
  • F. Müller
    • 3
  • B. Gorr
    • 3
  • H.-J. Christ
    • 3
  • M. Heilmaier
    • 1
  1. 1.Institute for Applied Materials (IAM-WK)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute for Applied Materials (IAM-WBM)Karlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany
  3. 3.Institut für WerkstofftechnikUniversität SiegenSiegenGermany

Personalised recommendations