Skip to main content

Advertisement

Log in

Yield Strength Enhancement by Carbon Trapping in Ferrite of the Quenching and Partitioning Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The split quenching and partitioning (S-QP) process allows researchers to investigate microstructure and properties separately, i.e., before and after partitioning. After the partitioning process, the yield strength increases by approximately 300 MPa in the ferrite-bearing δ-quenching and partitioning (δ-QP) steel. We propose that carbon trapping in dislocations at the ferrite grain boundaries during partitioning process is responsible for the yield strength enhancement of ferrite. Combined transmission electron microscopy and 3D atom probe tomography observations demonstrate carbon atoms segregating in dislocations. The mechanisms for the high yield strength of ferrite presented QP steels are clarified for the first time in this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D.V. Edmonds, K. He, F.C. Rizzo, B.C.D. Cooman, D.K. Matlock, J.G. Speer. Mater. Sci. Eng. A, 2006, vol. 438, pp. 25-34.

    Article  Google Scholar 

  2. A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, E.D. Moor. Acta Mater., 2008, vol. 56, pp. 16-22.

    Article  Google Scholar 

  3. J. Speer, D.K. Matlock, B.C.D. Cooman, J.G. Schroth. Acta Mater., 2003, vol. 51, pp. 2611-22.

    Article  Google Scholar 

  4. J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock. Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 219-37.

    Article  Google Scholar 

  5. D.V. Edmonds, J.G. Speer. Mater. Sci. Technol., 2010, vol. 26, pp. 386-91.

    Article  Google Scholar 

  6. A.J. Clarke, J.G. Speer, D.K. Matlock, F.C. Rizzo, D.V. Edmonds, M.J. Santofimia. Scripta Mater., 2009, vol. 61, pp. 149-52.

    Article  Google Scholar 

  7. M.J. Santofimia, T. Nguyen-Minh, L. Zhao, R. Petrov, I. Sabirov, J. Sietsma. Mater. Sci. Eng. A, 2010, vol. 527, pp. 6429-39.

    Article  Google Scholar 

  8. Y. Toji, H. Matsuda, M. Herbig, P.P. Choi, D. Raabe. Acta Mater., 2014, vol. 65, pp. 215-28.

    Article  Google Scholar 

  9. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, L. Wang. Scripta Mater., 2013, vol. 68, pp. 321-24.

    Article  Google Scholar 

  10. H.L. Yi, P. Chen, Z.Y. Hou, N. Hong, H.L. Cai, Y.B. Xu, D. Wu, G.D. Wang. Scripta Mater., 2013, vol. 68, pp. 370-74.

    Article  Google Scholar 

  11. H. Yi, K. Lee, H. Bhadeshia. Mater. Sci. Technol., 2011, vol. 27, pp. 525-29.

    Article  Google Scholar 

  12. H. Yi, K. Lee, H. Bhadeshia. Mater. Sci. Eng. A, 2011, vol. 528, pp. 5900-3.

    Article  Google Scholar 

  13. H. Yi, J. Ryu, H. Bhadeshia, H. Yen, J. Yang. Scripta Mater., 2011, vol. 65, pp. 604-7.

    Article  Google Scholar 

  14. R. Hill, C. Howard. J. Appl. Crystallogr., 1987, vol. 20, pp. 467-74.

    Article  Google Scholar 

  15. H. Rietveld. Acta Crystallogr., 1967, vol. 22, pp. 151-52.

    Article  Google Scholar 

  16. H. Rietveld. J. Appl. Crystallogr., 1969, vol. 2, pp. 65-71.

    Article  Google Scholar 

  17. B. Gault, M.P. Moody, J.M. Cairney, S.P. Ringer. Atom probe microscopy, Springer Science & Business Media, New York, 2012, pp. 74-79.

    Book  Google Scholar 

  18. A. Kumar, S.B. Singh, K.K. Ray. Mater. Sci. Eng. A, 2008, vol. 474, pp. 270-82.

    Article  Google Scholar 

  19. P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, N. Parvin. Mater. Sci. Eng. A, 2009, vol. 518, pp. 1-6.

    Article  Google Scholar 

  20. M.A. Maleque, Y.M. Poon, H.H. Masjuki. J. Mater. Process. Technol., 2004, vol. 153-154, pp. 482-87.

    Article  Google Scholar 

  21. Q. Furnémont, M. Kempf, P.J. Jacques, M. Göken, F. Delannay. Mater. Sci. Eng. A, 2002, vol. 328, pp. 26-32.

    Article  Google Scholar 

  22. P.J. Jacques, Q. Furnémont, F. Lani, T. Pardoen, F. Delannay. Acta Mater., 2007, vol. 55, pp. 3681-3693.

    Article  Google Scholar 

  23. C.H. Seo, K.H. Kwon, K. Choi, K.H. Kim, J.H. Kwak, S. Lee. Scripta Mater., 2012, vol. 66, pp. 519-522.

    Article  Google Scholar 

  24. H. Bhadeshia, R. Honeycombe. Steels: Microstructure and Properties, Butterworth-Heinemann, London, 2011, pp. 106-10.

    Google Scholar 

  25. R.W.K. Honeycombe, and G.M. Smith: Strength Met. Alloys, 1982, pp. 407–12.

  26. B.J. Brindley, P.J. Worthington. Int. Mater. Rev., 1970, vol. 15, pp. 101-14.

    Article  Google Scholar 

  27. A.H. Cottrell, B.A. Bilby. Proc. Phys. Soc., 1949, vol. 62, pp. 49-62.

    Article  Google Scholar 

  28. R. Wu, X. Jin, C. Wang, L. Wang. J. Mater. Eng. Perform., 2016, vol. 25, pp. 1603-10.

    Article  Google Scholar 

  29. G. Liu, S. Zhang, J. Li, J. Wang, Q. Meng. Mater. Sci. Eng. A, 2016, vol. 669, pp. 387-95.

    Article  Google Scholar 

  30. S. Sodjit, V. Uthaisangsuk. Mater. Des., 2012, vol. 41, pp. 370-79.

    Article  Google Scholar 

  31. N. Peranio, Y. J. Li, F. Roters, D. Raabe. Mater. Sci. Eng. A, 2010, vol. 527, pp. 4161-68.

    Article  Google Scholar 

  32. X. L. Cai, J. Feng, W. S. Owen. Metall. Mater. Trans. A, 1985, vol. 16, pp. 1405-15.

    Article  Google Scholar 

  33. M. Mukherjee, A. R. Chintha, A. Raj, P Pathak. Mater. Sci. Technol., 2012, vol. 28, pp. 971-79.

    Article  Google Scholar 

  34. B.L. Bramfitt, and B.S. Corporation: in Structure/Property Relationships in Irons and Steels, J.R. Davis, eds., Metals Handbook Desk Edition, 1998, pp. 153–73.

  35. R. D. K. Misra, K. K. Tenneti, G. C. Weatherly, G. Tither. Metall. Mater. Trans. A, 2003, vol. 34, pp. 2341-2351.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [Grant Nos. U1560204 and 51722402] and Liaoning Province High-tech R&D Program [Grant Number 2015105004]. The authors acknowledge the facilities, and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Australian Centre for Microscopy & Microanalysis, the University of Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. L. Yi.

Additional information

Manuscript submitted June 7, 2017.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WAV 8034 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Wang, G.D., Ceguerra, A.V. et al. Yield Strength Enhancement by Carbon Trapping in Ferrite of the Quenching and Partitioning Steel. Metall Mater Trans A 49, 235–240 (2018). https://doi.org/10.1007/s11661-017-4364-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4364-7

Navigation