Skip to main content
Log in

Phase Stability of Intermetallic Compound Ce3Al in Mechanical Milling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

For many years, cerium-aluminum systems have been extensively studied because of their unusual magnetic behavior. As the atomic radii of cerium and aluminum differ greatly from each other, a solid solution is not obtained because of the Hume-Rothery rule. Therefore, intermetallic compounds are usually studied, and structural stability is crucial for further discussion of their physical properties. The present article reports on high-energy ball milling of the intermetallic compound Ce3Al at room temperature. It has been found that non-equilibrium supersaturated Ce solid solution was formed during the milling. The solubility of aluminum was estimated as 5 to 13 at. pct from the peak shifts of the X-ray diffraction pattern. The structural changes in the initial stages of the milling were also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Q.-S. Zeng, Y. Ding, W. L. Mao, W. Luo, A. Blomqvist, R. Ahuja, W. Yang, J. Shu, S. V. Sinogeikin, Y. Meng, D. L. Brewe, J.-Z. Jiang, and H.-K. Mao, Proc. Nat. Aca. Sci., 2009, 106, 2515–18. DOI:10.1073/pnas.0813328106.

    Article  Google Scholar 

  2. J. C. Slater, J. Chem. Phys., 1964, 41, 3199–203. DOI:10.1063/1.1725697.

    Article  Google Scholar 

  3. W. Hume-Rothery, G.W. Mabbott, M. Channel-Evans, Phil. Trans. Royal Soc. (London), 1934, A233, 1–97.

    Article  Google Scholar 

  4. W. B. Pearson, “Handbook of Lattice Spacings and Structures of Metals”, Pergamon Press, London, 1958.

    Google Scholar 

  5. M. Sera, T. Satoh and T. Kasuya, J. Magn. Magn. Mater., 1987, 63-64, 82–84.

    Article  Google Scholar 

  6. J. Sakurai, Y. Murashita, Y. Aoki, T. Fujita, T. Takabatake and H. Fujii, J. Phys. Soc. Jpn., 1989, 58, 4078–85.

    Article  Google Scholar 

  7. W.-H. Li, J. C. Peng, Y.-C. Lin, C. Lee, J. W. Lynn and Y. Y. Chen, J. Appl. Phys., 1998, 83, 6426–28.

    Article  Google Scholar 

  8. Y. Y. Chen, Y. D. Yao, C. R. Wang, W. H. Li, C. L. Chang, T. K. Lee, T. M. Hong, J. C. Ho, and S. F. Pan, Phys. Rev. Lett., 2000, 84, 4990–93. DOI:10.1103/PhysRevLett.84.4990

    Article  Google Scholar 

  9. M. C. Gao, N. Unlu, G. J. Shiflet, M. Mihailkovic, and M. Widom, Metal. & Mater. Trans., 2005, 36A, 3269–79.

    Article  Google Scholar 

  10. A. Ye. Yermakov, Ye. Ye. Ymrchikov, and V. A. Barinov, Phys. Met. Metall., 1981, 52, 50.

    Google Scholar 

  11. R. B. Schwarz and C. C. Koch, Appl. Phys. Lett., 1986, 49, 146–48. DOI:10.1063/1.97206.

    Article  Google Scholar 

  12. R. B. Schwarz and W. L. Johnson, Phys. Rev. Lett., 1983, 51, 415–18. DOI:10.1103/PhysRevLett.51.415

    Article  Google Scholar 

  13. C. C. Koch, O. B. Cavin, C. G. McKamey, and J. O. Scarbrough, Appl. Phys. Lett., 1983, 43, 1017–19. DOI:10.1063/1.94213.

    Article  Google Scholar 

  14. K. Sakurai, Y. Yamada, M. Ito, C. H. Lee, T. Fukunaga, and U. Mizutani, Appl. Phys. Lett., 1990, 57, 2660–62. DOI:10.1063/1.104190.

    Article  Google Scholar 

  15. L.M. Di and H. Bakker, J. Phys. Condens. Matter, 1991, 3, 3427–32. DOI:10.1088/0953-8984/3/20/004.

    Article  Google Scholar 

  16. L.M. Di and H. Bakker, J. Phys. Condens. Matter, 1991, 3, 9319–26.

    Article  Google Scholar 

  17. M. Oehring and R. Bormann, J. Phys. Colloq., 1990, 51, C4-69 (Paris).

    Article  Google Scholar 

  18. K. Togano, P. Badica, Y. Nakamori, S. Orimo, H. Takeya and K. Hirata, Phys. Rev. Lett., 2004, 93, 247004. DOI:10.1103/PhysRevLett.93.247004.

    Article  Google Scholar 

  19. H. Takeya, T. Hirano and K. Kadowaki, Physica C, 1996, 256, 220–26. DOI:10.1016/0921-4534(95)00651-6

    Article  Google Scholar 

  20. H. Takeya, M. ElMassalami, S. Kasahara and K. Hirata, Phys. Rev. B, 2007, 76, 104506. DOI:10.1103/PhysRevB.76.104506.

    Article  Google Scholar 

  21. K. Sakurai, M. Mori and U. Mizutani, Phys. Rev. B, 1992, 46, 5711–14. DOI:10.1103/PhysRevB.46.5711.

    Article  Google Scholar 

  22. X. Guo, J. F. Qi, K. Sakurai, Scripta. Materialia. 2003, 48, 1185–88. DOI:10.1016/S1359-6462(02)00570-5.

    Article  Google Scholar 

  23. F. R. Boer and D. G. Perrifor, “Cohesion in Metals”, Elsevier, Netherlands, 1988.

    Google Scholar 

  24. A. Takeuchi and A. Inoue, Mater. Trans. JIM, 2000, 41, 1372–78.

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (YZ) wishes to thank the Nuclear Researcher Exchange Program of the Japanese government for financial support. The work was done during her leave from the Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Sakurai.

Additional information

Manuscript submitted May 3, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Yp., Takeya, H. & Sakurai, K. Phase Stability of Intermetallic Compound Ce3Al in Mechanical Milling. Metall Mater Trans A 48, 5635–5638 (2017). https://doi.org/10.1007/s11661-017-4307-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4307-3

Navigation