Advertisement

Metallurgical and Materials Transactions A

, Volume 48, Issue 11, pp 5658–5666 | Cite as

Epitaxial Fe Thin Films on {100} Y2Ti2O7: Model Interfaces for Nano-Oxide Dispersion Strengthened Steels

  • T. Stan
  • Y. Wu
  • P. B. Wells
  • H. D. Zhou
  • G. R. Odette
Article
  • 327 Downloads

Abstract

Nanostructured Ferritic Alloys, a variant of oxide dispersion strengthened steels, contain a high density of ≈2.5 nm Y-Ti-O nano-oxides (NOs) that provide remarkable irradiation tolerance, enhance recombination of vacancies and self-interstitial irradiation defects, and trap He in fine-scale bubbles at their interfaces. To complement studies of embedded NOs, mesoscopic-scale metal-oxide interfaces were fabricated by electron beam deposition of Fe films on {100} Y2Ti2O7 (YTO) bulk single-crystal substrates. We report, for the first time, the dominant epitaxial orientation relationship (OR) for the polycrystalline Fe film: {110}Fe\\{100}YTO and 〈111〉Fe\\〈110〉YTO. Further, one large grain region had an OR that is also found in embedded NOs: {100}Fe\\{100}YTO and 〈100〉Fe\\〈110〉YTO. HRTEM studies show clean, semicoherent interfaces with misfit dislocation spacings of 0.7 and 1.4 nm, respectively. These observations are important for the development of first principles models of metal-oxide interfaces, and the bilayers themselves will be used to observe the He partitioning between the Fe, YTO, and the corresponding interface.

Notes

Acknowledgments

The authors thank D. Stave and G. Seward (UCSB) for help with various parts of the data acquisition and analysis. We thank K. Sickafus (UT), B. Uberuaga (LANL), S. Valone (LANL), and Y. Jiang (CSU) for many helpful discussions and providing key insights on interfaces. This work was primarily supported by the US DOE, Office of Fusion Energy Sciences, under grant DE-FG03-94ER54275. Crystal growth was supported by NSF DMR 1350002. The characterization was carried out at the UCSB CNSI Microstructure and Microanalysis Facility, an NSF MRSEC, supported by NSF DMR 1121053. The collaboration with Y. Jiang was partially supported by NSF of China 51471189.

References

  1. 1.
    G. Robert Odette: JOM, 2014, vol. 66, p. 2427.CrossRefGoogle Scholar
  2. 2.
    G.R. Odette, M.J. Alinger, and B.D. Wirth: Annu. Rev. Mater. Res., 2008, vol. 38, pp. 471–503.CrossRefGoogle Scholar
  3. 3.
    N. Cunningham, Y. Wu, D. Klingensmith, and G.R. Odette: Mater. Sci. Eng. A, 2014, vol. 613, pp. 296–305.CrossRefGoogle Scholar
  4. 4.
    Y. Dai, G. R. Odette, and T. Yamamoto: The Effects of Helium in Irradiated Structural Alloys, 1st ed., Elsevier Inc., Amsterdam, 2012.Google Scholar
  5. 5.
    A. R. Raffray, M. Akiba, V. Chuyanov, L. Giancarli, and S. Malang: J. Nucl. Mater. 2002; 307:21–30.CrossRefGoogle Scholar
  6. 6.
    E.E. Bloom, S.J. Zinkle, and F.W. Wiffen: J. Nucl. Mater., 2004, vol. 329, pp. 12–19.CrossRefGoogle Scholar
  7. 7.
    Everett E. Bloom: J. Nucl. Mater., 1998, vol. 258, pp. 7–17.CrossRefGoogle Scholar
  8. 8.
    G. Robert Odette and David T. Hoelzer: JOM, 2010, vol. 62, pp. 84–92.CrossRefGoogle Scholar
  9. 9.
    Emmanuelle A. Marquis: Appl. Phys. Lett., 2008, vol. 93, pp. 10–13.CrossRefGoogle Scholar
  10. 10.
    S. Liu, G.R. Odette, and C.U. Segre: J. Nucl. Mater., 2014, vol. 445, pp. 50–56.CrossRefGoogle Scholar
  11. 11.
    V. Badjeck, M.G. Walls, L. Chaffron, J. Malaplate, and K. March: J. Nucl. Mater., 2015, vol. 456, pp. 292–301.CrossRefGoogle Scholar
  12. 12.
    Yuan Wu, Jim Ciston, Stephan Kräemer, Nathan Bailey, G. Robert Odette, and Peter Hosemann: Acta Mater., 2016, vol. 111, pp. 108–15.CrossRefGoogle Scholar
  13. 13.
    Miao Y, Mo K, Cui B, Chen W-Y, Miller MK, Powers KA, Mccreary V, Gross D, Almer J, Robertson IM, Stubbins JF: Mater. Charact., 2015, vol. 101, pp. 136–43.CrossRefGoogle Scholar
  14. 14.
    J. Ribis and Y. De Carlan: Acta Mater., 2012, vol. 60, pp. 238–52.CrossRefGoogle Scholar
  15. 15.
    J. Ribis and S. Lozano-Perez: J. Nucl. Mater., 2014, vol. 444, pp. 314–22.CrossRefGoogle Scholar
  16. 16.
    Karl Dawson and Gordon J. Tatlock: J. Nucl. Mater., 2014, vol. 444, pp. 252–60.CrossRefGoogle Scholar
  17. 17.
    M. Tamura, H. Sakasegawa, K. Shiba, H. Tanigawa, K. Shinozuka, and H. Esaka: Metall. Mater. Trans. A, 2011, vol. 42, pp. 2176–88.CrossRefGoogle Scholar
  18. 18.
    Y. Wu, E. M. Haney, N. J. Cunningham, and G. R. Odette: Acta Mater., 2012, vol. 60, pp. 3456–68.CrossRefGoogle Scholar
  19. 19.
    A. J. London, B. K. Panigrahi, C. C. Tang, C. Murray, and C. R M Grovenor: Scr. Mater., 2016, vol. 110, pp. 24–27.CrossRefGoogle Scholar
  20. 20.
    R. Kasada, N. Toda, K. Yutani, H. S. Cho, H. Kishimoto, A. Kimura: J. Nucl. Mater., 2007, vol. 367, pp. 222–28.CrossRefGoogle Scholar
  21. 21.
    Yang L, Jiang Y, Odette GR, Zhou W, Liu Z, Liu Y: Acta Mater., 2013, vol. 61, pp. 7260–70.CrossRefGoogle Scholar
  22. 22.
    Yang L, Jiang Y, Odette GR, Yamamoto T, Liu Z, Liu Y: J. Appl. Phys., 2014, vol. 115, p. 143508.CrossRefGoogle Scholar
  23. 23.
    Yang L, Jiang Y, Wu Y, Odette GR, Zhou Z, Lu Z: Acta Mater., 2016, vol. 103, pp. 474–82.CrossRefGoogle Scholar
  24. 24.
    Stan T, Wu Y, Odette GR, Sickafus KE, Dabkowska HA, Gaulin BD: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, vol. 44, pp. 4505–12.Google Scholar
  25. 25.
    Samrat Choudhury, Dane Morgan, and Blas Pedro Uberuaga: Sci. Rep., 2014, vol. 4, p. 6533.CrossRefGoogle Scholar
  26. 26.
    J. Brodrick, D.J. Hepburn, and G.J. Ackland: J. Nucl. Mater., 2014, vol. 445, pp. 291–97.CrossRefGoogle Scholar
  27. 27.
    Aguiar JA, Anderoglu O, Choudhury S, Baldwin JK, Misra A, Uberuaga BP: J. Mater. Sci., 2015, 50: pp. 2726–2734.CrossRefGoogle Scholar
  28. 28.
    Dabkowska HA, Dabkowski AB: Springer Handbook of Crystal Growth. Springer, Berlin, 2010, pp. 367–91.CrossRefGoogle Scholar
  29. 29.
    Oxford Instruments: CHANNEL 5, 2017.Google Scholar
  30. 30.
    Oxford Instruments: CHANNEL 5 User Manual, 2007.Google Scholar
  31. 31.
    D.C. Palmer: CrystalMaker, 2014.Google Scholar
  32. 32.
    Z Yang and M Enomoto: Mater. Sci. Eng. A, 2002, vol. 332, pp. 184–92.CrossRefGoogle Scholar
  33. 33.
    M Sennour, P H Jouneau, and C Esnouf: J. Mater. Sci., 2004, vol. 39, pp. 4521–31.CrossRefGoogle Scholar
  34. 34.
    Mao X, Oh KH, Kang SH, Kim TK, Jang J: Acta Mater., 2015, vol. 89, pp. 141–52.CrossRefGoogle Scholar
  35. 35.
    Ashcroft NW, Mermin ND: Solid State Physics, 1st edn. Harcourt College press, Orlando, 1976.Google Scholar
  36. 36.
    H. Ibach: Physics of Surfaces and Interfaces, 2006.Google Scholar
  37. 37.
    Porter DA, Easterling KE, Sherif MY: Phase Transformations in Metals and Alloys, 3rd edn. CRC Press, Boca Raton, 2009.Google Scholar
  38. 38.
    L. Barnard, N. Cunningham, G. R. Odette, I. Szlufarska, and D. Morgan: Acta Mater., 2015, vol. 91, pp. 340–54.CrossRefGoogle Scholar
  39. 39.
    Marcia H. Grabow and George H. Gilmer: Surf. Sci., 1988, vol. 194, pp. 333–46.CrossRefGoogle Scholar
  40. 40.
    J A Venables, G D T Spiller, and M Hanbucken: Reports Prog. Phys., 1984, vol. 47, p. 399.CrossRefGoogle Scholar
  41. 41.
    Hiroshi Nakamura, Yousuke Kawahito, Koji Nishimoto, and Seiji Katayama: J. Laser Appl., 2015, vol. 27, p. 32012.CrossRefGoogle Scholar
  42. 42.
    Saad A. Khairallah, Andrew T. Anderson, Alexander Rubenchik, and Wayne E. King: Acta Mater., 2016, vol. 108, pp. 36–45.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • T. Stan
    • 1
    • 3
  • Y. Wu
    • 1
  • P. B. Wells
    • 1
  • H. D. Zhou
    • 2
  • G. R. Odette
    • 1
  1. 1.Materials DepartmentUniversity of California SantaBarbaraUSA
  2. 2.Department of Materials Science and EngineeringUniversity of TennesseeKnoxvilleUSA
  3. 3.Northwestern UniversityEvanstonUSA

Personalised recommendations