Skip to main content
Log in

Microstructures and Mechanical Properties of as-Drawn and Laboratory Annealed Pearlitic Steel Wires

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Near eutectoid fully pearlitic wire rod (5.5 mm diameter) was taken through six stages of wire drawing (drawing strains of 0 to 2.47). The as-drawn (AD) wires were further laboratory annealed (LA) to re-austenitize and reform the pearlite. AD and LA grades, for respective wire diameters, had similar pearlite microstructure: interlamellar spacing (λ) and pearlite alignment with the wire axis. However, LA grade had lower hardness (for both phases) and slightly lower fiber texture and residual stresses in ferrite. Surprisingly, essentially identical tensile yield strengths in AD and LA wires, measured at equivalent spacing, were found. The work hardened AD had, as expected, higher torsional yield strengths and lower tensile and torsional ductilities than LA. In both wires, stronger pearlite alignment gave significantly increased torsional ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E. A. Shipley: High-strength steels, The Iron and Steel Institute, London SWI; 1962, pp. 42-45.

    Google Scholar 

  2. J. D. Embury and R. M. Fisher: Acta Metall., 1996, vol. 14, pp. 147-159.

    Article  Google Scholar 

  3. G. Langford: Metall. Trans., 1970, vol. 1,pp. 465-477.

    Article  Google Scholar 

  4. G. Langford: Metall. Trans. A, 1977, vol. 8,pp. 861-875.

    Article  Google Scholar 

  5. M. Zelin: Acta Mater., 2002, vol. 50, pp. 4431-4447.

    Article  Google Scholar 

  6. X. Zhang, A. Godfrey, N. Hansen, X. Huang, W. Liu and Q. Liu: Mater. Charact.,2009, vol. 61,pp. 65-72.

    Article  Google Scholar 

  7. X. Zhang, A. Godfrey, X. Huang, N. Hansen and Q. Liu: Acta Mater., 2011, vol. 59, pp. 3422-3430.

    Article  Google Scholar 

  8. A.B. Dove: Steel Wire Handbook, vol. 3, 1st ed., The Wire Association, Branford, Connecticut, 1972, pp. 61–65.

  9. B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty: Thermo-Mechanical Processing of Metallic Materials, 1st ed., Pergamon Materials Series, Elsevier, Oxford, 2007, pp. 442–48.

  10. J. Toribio: Scr. Mater., 1998, vol. 39, pp. 323-328.

    Article  Google Scholar 

  11. J. Toribio: Mater. Sci. Eng. A, 2004, vol. 387-389, pp. 227-230.

    Article  Google Scholar 

  12. X. Zhang, A. Godfrey, N. Hansen and X. Huang: Acta Mater., 2013, vol. 61, pp. 4898-4909.

    Article  Google Scholar 

  13. F. Fang, Y. Zhao, P. Liu, L. Zhou, X. Hu, X. Zhou and Z. Xie: Mater Sci. and Engg. A, 2014, vol. 608, pp. 11-15.

    Article  Google Scholar 

  14. W.J. Nam, H.R. Song and C.M. Bae: ISIJ Int., 2005, vol. 45, pp. 1205-1210.

    Article  Google Scholar 

  15. M. W. Krapp, A. Hohenwarter, S. Wurster, B. Yang and R. Pippan: Acta Mater., 2016, vol. 106, pp. 239-248.

    Article  Google Scholar 

  16. T. Z. Zhao, S. H. Zhang, G. L. Zhang, H. W. Song and M. Cheng: Mater. Des., 2014, vol. 59, pp. 397-405.

    Article  Google Scholar 

  17. V. I. Izotov, V. A. Pozdnyakov, E. V. Lukyanenko and G. A. Filippov: Str. Plast., 2007, vol. 103, pp. 519-529.

    Google Scholar 

  18. A. V. Makarov, R. A. Savrai, V. M. Schastlivtesev and L. Y. Egorova: Str. Plast., 2007, vol. 104, pp. 522-534.

    Google Scholar 

  19. J. Gil Sevillano: Mater. Sci. Eng., 1975, vol. 21, pp. 221-225.

    Article  Google Scholar 

  20. S. Goto, R. Kirchheim, T. Al Kassab and C. Borchers: Trans. Nonferrous Met. Soc. China, 2007, vol. 17, pp. 1129-1138.

    Article  Google Scholar 

  21. K. Van Acker, J. Root, P. Van Houtte, E. Aernoudt: Acta Mater., 1996, vol. 44, pp. 4039–4049.

    Article  Google Scholar 

  22. B. Karlsson and G. Linden: Mater. Sci. Eng., 1975, vol. 17, pp. 153-164.

    Article  Google Scholar 

  23. K.T. Park, K. Cho and S, K. Choi: Scr. Mater., 1997, vol. 37, pp. 661-666.

    Article  Google Scholar 

  24. P. Kumar, N.P. Gurao, A. Haldar and S. Suwas: ISIJ Int., 2011, vol. 51, pp. 679-684.

    Article  Google Scholar 

  25. A. Durgaprasad, S. K. Giri, S. Lenka, S. Kundu, S. Chandra, S. K. Mishra, R. D. Doherty and I. Samajdar: Acta Mater., 2017, vol. 129, pp. 278-289.

    Article  Google Scholar 

  26. R.M. Shemenski, J. Walters and M. Foster: Wire J Intr., 2005, vol. 38, pp. 60-65.

    Google Scholar 

  27. G. M. Pharr: Mater. Sci. Eng. A, 1998, vol. 253, pp. 151-159.

    Article  Google Scholar 

  28. P. Van Houtte: The “MTM-FHM” and “MTM-TAY” Software System - Version 2, Manual, Department of MME, KLU Leuven, Belgium, 1995, pp. 5–41.

  29. H.J. Bunge: Texture Analysis in Materials Science: Mathematical Methods, Elsevier, Amsterdam, 2013, pp. 119–141.

    Google Scholar 

  30. P. Van Houtte and L. De Buyser: Acta Metall. Mater., 1993, vol. 41, pp. 323-336.

    Article  Google Scholar 

  31. W. F. Hosford Jr: Trans AIME, 1964, vol. 230, pp. 12-15.

    Google Scholar 

  32. J. Languillaume, G. Kapelski and B. Baudelet: Acta Mater., 1997, vol. 45, pp. 1201-1212.

    Article  Google Scholar 

  33. F. Yang, C. Ma, J.Q. Jiang, H.P. Feng and S.Y. Zhai: Scr. Mater., 2008, vol. 59, pp. 850-853.

    Article  Google Scholar 

  34. M. Nikolussi, S.L. Shang, T. Gressmann, A. Leineweber, E.J. Mittemeijer, Y. Wang and Z.K. Liu: Scr Mater., 2008, vol. 59, pp. 814–817.

    Article  Google Scholar 

  35. D. J. Dever: J Appl Phys., 1972, vol. 43, pp. 3293–3301.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Support from Tata Steel and DST (Department of Science and Technology, India) are acknowledged. The authors would also like to express their appreciation for the usage of the National Facility of Texture and OIM (at IIT Bombay), the Nano-Indention facility (a central facility of IIT Bombay), and the TEM laboratory (of SAIF, IIT Bombay). Support from CoEST (center of excellent in steel technology) IIT Bombay is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Samajdar.

Additional information

Manuscript submitted April 1, 2017.

APPENDIX

APPENDIX

Assuming uniaxial plastic strain,

$$ \lambda_{\text{f}} = \lambda_{\text{i}} e^{{{\raise0.7ex\hbox{$\varepsilon $} \!\mathord{\left/ {\vphantom {\varepsilon 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}} $$
(AI)

It has been suggested[5] that strong 〈110〉 ferrite fiber texture makes it a plain strain deformation. In that case,

$$ \lambda_{\text{f}} = \lambda_{\text{i}} e^{\varepsilon } $$
(AII)

However, data from Langford[4] as well as Zelin[5] indicate that for ε > 1 measured spacings follow Eq. [AII]. Toribio’s[11] observation on a slower spacing reduction for ε ≤ 1 is a clear contradiction. Langford[3] originally proposed, although the argument was not described and it does not appear to be widely remembered/acknowledged, that a slower spacing reduction is expected in misaligned pearlite. This is exactly what is seen, qualitatively in Figure 12(a). This appendix makes an attempt to quantify this effect.

For this, a unit cube of eutectoid cementite, Figure 12(b), was considered. Using Langford’s nomenclature[3] the cementite is on the “LK” plane, where wire axis is “L”. The original lamellar spacing (before deformation) is λ i with an initial orientation angle α i (with ‘L’). Other important dimensions are the sides of the triangle: A i, H i and O i. After drawing to a strain\( { \in = }0.693 \left( {{ \in = }\ln \left( {\frac{{A_{\text{f}} }}{{A_{\text{i}} }}} \right)} \right) \), the triangle dimensions (Figure 12(b)) changes to: α f, H f, A f (A f = A i*2) and O f (=O i/√2). Following parameters can be geometrically estimated,

$$ \tan \alpha_{\text{i}} = \frac{{O_{\text{i}} }}{{A_{\text{i}} }} $$
(AIII)
$$ \tan \alpha_{\text{f}} = \frac{{O_{\text{f}} }}{{A_{\text{f}} }} $$
(AIV)
$$ \frac{{O_{\text{f}} }}{{O_{\text{i}} }} = \frac{1}{\sqrt 2 } \, {\text{and}} \, \frac{{A_{\text{f}} }}{{A_{\text{i}} }} = 2. $$
(AV)

From Eqs. [AIII] to [AV],

$$ \tan \alpha_{\text{f}} = \frac{{\tan \alpha_{\text{i}} }}{2\sqrt 2 } $$
(AVI)

Equation [AVI] is for \( { \in} \, = \, 0.693 \). The same can be extended for any given strain (ε) as,

$$ \tan \alpha_{\text{f}} = \frac{{\tan \alpha_{\text{i}} }}{{\exp \left( {\frac{3\varepsilon }{2}} \right)}} $$
(AVII)

Thus, α f can be related to \( \alpha_{\text{i}} \) and strain (ε) as,

$$ \alpha_{\text{f}} = { \tan }^{ - 1 } \left[ {\frac{{\tan \alpha_{\text{i}} }}{{\exp \left( {\frac{3\varepsilon }{2}} \right)}}} \right]. $$
(AVIII)

The Equation [AVIII] thus predicts the rotation of misaligned lamellae to the wire axis “L.” Assuming constant volume,

$$ V = t_{\text{i}} \times H_{\text{i}} \times A_{\text{i}} = t_{\text{f}} \times H_{\text{f}} \times A_{\text{f}}, $$
(AIX)

where t is the thickness of the lamella.

Since \( \sin \alpha_{\text{i}} = \frac{{A_{\text{i}} }}{{H_{\text{i}} }} \) and \( \sin \alpha_{\text{f}} = \frac{{A_{\text{f}} }}{{H_{\text{f}} }} \), it can be shown that

$$ \frac{{t_{\text{f}} }}{{t_{\text{i}} }} = \left( {\frac{{\sin \alpha_{\text{f}} }}{{\sqrt 2 \sin \alpha_{\text{i}} }}} \right) \times \exp (\varepsilon ). $$
(AX)

And also in terms of interlamellar spacing (λ),

$$ \frac{{\lambda_{\text{f}} }}{{\lambda_{\text{i}} }} = \left( {\frac{{\sin \alpha_{\text{f}} }}{{\sqrt 2 \sin \alpha_{\text{i}} }}} \right) \times \exp (\varepsilon ). $$
(AXI)

From Eqs. [AVIII] and [AXI] and a given strain (ε), α f and \( \frac{{\lambda_{\text{f}} }}{{\lambda_{\text{i}} }} \) can be calculated. These are shown for ε = 0.693 in Figure 12(c). The figure demonstrates, quantitatively, the effect of α i on α f and \( \frac{{\lambda_{\text{f}} }}{{\lambda_{\text{i}} }} \). For example, at α i = 90 deg and 0 deg the \( \frac{{\lambda_{\text{f}} }}{{\lambda_{\text{i}} }} \) will be 2 and 0.707, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durgaprasad, A., Giri, S., Lenka, S. et al. Microstructures and Mechanical Properties of as-Drawn and Laboratory Annealed Pearlitic Steel Wires. Metall Mater Trans A 48, 4583–4597 (2017). https://doi.org/10.1007/s11661-017-4269-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4269-5

Navigation