The Influence of Vanadium on Ferrite and Bainite Formation in a Medium Carbon Steel

Abstract

The influence of vanadium additions on transformation kinetics has been investigated in a medium carbon forging steel. Using dilatometry to track transformation during continuous cooling or isothermal transformation, the impact of vanadium on both ferrite-pearlite and bainite has been quantified. Transmission electron microscopy and atom probe tomography have been used to establish whether vanadium was present in solid solution, or as clusters and precipitates. The results show that vanadium in solid solution has a pronounced retarding influence on ferrite-pearlite formation and that, unlike in the case of niobium, this effect can be exploited even during relatively slow cooling. The influence on bainite transformation was found to depend on temperature; an explanation in terms of the effect of vanadium on heterogeneous nucleation is tentatively proposed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    R. Lagneborg, T. Siwecki, S. Zajac, and B. Hutchinson: Scand J Metall 1999, vol. 28, pp. 186–241.

    Google Scholar 

  2. 2.

    G. Tweedale: Sheffield Steel and America: 1st Edition: Cambridge University Press, 1987.

    Google Scholar 

  3. 3.

    J. Bellus, P. Dierickx, V. Jacot, and M. Robelet: Steel and Method for Making Cleavable Parts, European Patent ep1051531b1, 1998.

  4. 4.

    J. Bellus, P. Joly, C. Pichard, V. Jacot, C. Tomme, and D. Robat: Process for Manufacturing Steel Forging, European Patent ep0787812b1, 1996.

  5. 5.

    G. Gomez, T. Perez, H. K. D. H. Bhadeshia: Mater Sci Technol 2009, vol. 25, pp. 1502–1507.

    Google Scholar 

  6. 6.

    G. Gomez, T. Perez, H. K. D. H. Bhadeshia: Mater Sci Technol 2009, vol. 25, pp. 1508–1512.

    Article  Google Scholar 

  7. 7.

    T. Sourmail, H. Michaud, E. d’Eramo, and G. Baudry: in: 2nd International Conf. Super High Strength Steels, D.I. di Metallurgia, eds., AIM, Verona, Italy, 2016.

  8. 8.

    S. Engineer, H. Justinger, P. Janssen, M. Härtel, C. Hampel, and F. Randelhoff: in: 3rd International Conference on Steels for Cars and Trucks, H.-J. Wieland, ed., TEMA Technologie Marketing AG, Salzburg, 2011, pp. 404–11.

  9. 9.

    K.-I. Sugimoto and N. Yoshikawa: in: 3rd International Conference on Steels for Cars and Trucks, H.-J. Wieland, ed., TEMA Technologie Marketing AG, Salzburg, 2011, pp. 460–67.

  10. 10.

    S. Hasler, H. Roelofs, M. Lembke, and F.G. Caballero: in: 3rd International Conference on Steels for Cars and Trucks, H.-J. Wieland, ed., TEMA Technologie Marketing AG, Salzburg, 2011, pp. 330–37.

  11. 11.

    C. Keul, L. Moseker, W. Bleck, T. Rekersdrees, A. Stuber, H. Schliephake, C. Beyer, and H.-W. Raedt: in: 3rd International Conference on Steels for Cars and Trucks, H.-J. Wieland, ed., TEMA Technologie Marketing AG, Salzburg, 2011, pp. 208–17.

  12. 12.

    M.I. Goldshtein and S.G. Guterman: Metal Sci. Heat Treat. 1964, vol. 6(7), pp. 440–42. http://www.springerlink.com/index/Q1664785027W1271.pdf.

  13. 13.

    Woodhead, J.H.: in: Proceedings: Metals Society, Chicago, 1979, pp. 3–10.

  14. 14.

    P. Mangonon: Journal of Heat Treating 1980, vol. 1 (4), pp. 47–60. doi:10.1007/BF02833255

    Article  Google Scholar 

  15. 15.

    P. Mangonon: Metall Trans A 1982, vol. 13 (2), pp. 319–320. 10.1007/BF02643323

    Article  Google Scholar 

  16. 16.

    J.W. Woodhead: in: Vanadium in High Strength Steel, Proc. Vanitec Seminar, Chicago, 1983, pp. 3–10.

  17. 17.

    B. Garbarz, F. B. Pickering: Materials Science and Technology Feb. 1988, vol. 4 (2), pp. 117–126. 10.1179/mst.1988.4.2.117

    Article  Google Scholar 

  18. 18.

    K. A. Taylor, S. S. Hansen: Metall Trans A 1991, vol. 22 (10), pp. 2359–2374. 10.1007/BF02665002

    Article  Google Scholar 

  19. 19.

    H. Adrian: Mater Sci Technol 1999, vol. 15 (4), pp. 366–378. 10.1179/026708399101505987

    Article  Google Scholar 

  20. 20.

    M. Enomoto, N. Nojiri, Y. Sato: Materials Transactions, JIM 1994, vol. 35 (12), pp. 859–867.

    Article  Google Scholar 

  21. 21.

    C. Chen, F. Zhang, Z. Yang, C. Zheng: Materials & Design Oct. 2015, vol. 83, pp. 422–430.

    Article  Google Scholar 

  22. 22.

    S. Preston: J. Heat Treat. 1990, vol. 8 (2), pp. 93–99. 10.1007/BF02831629

    Article  Google Scholar 

  23. 23.

    C. Garcia-Mateo, L. Morales-Rivas, F. Caballero, D. Milbourn, and T. Sourmail: Metals, 2016, vol. 6(6), pp. 130. http://www.mdpi.com/2075-4701/6/6/130.

  24. 24.

    S. Bechet, L. Beaujard: Rev Métall 1955, vol. 10, pp. 830–836.

    Article  Google Scholar 

  25. 25.

    C. G. de Andrés, F. Caballero, C. Capdevila, D. S. Martin: Materials Characterization 2003, vol. 49, pp. 121–127.

    Article  Google Scholar 

  26. 26.

    L. Germain, N. Gey, R. Mercier, P. Blaineau, M. Humbert: Acta Mater 2012, vol. 60, pp. 4551–4562.

    Article  Google Scholar 

  27. 27.

    D. Acevedo-Reyes: Evolution de l’état de précipitation au cours de l’austénitisation d’aciers microalliés au vanadium et au niobium: Ph.D. thesis: INSA de Lyon 2007. https://hal.archives-ouvertes.fr/tel-00511332/.

  28. 28.

    F. Danoix, G. Grancher, A. Bostel, and D. Blavette: Ultramicroscopy, 2007, vol. 107(9), pp. 739–43.

  29. 29.

    R. Stasko, H. Adrian, A. Adrian: Mater Charact 2006, vol. 56, pp. 340–347.

    Article  Google Scholar 

  30. 30.

    W. Steven, A. G. Haynes: J. I. S. I. 1983, vol. 1965, pp. 349–359.

    Google Scholar 

  31. 31.

    T. Sourmail and H. Rouyer: Effect of niobium on the hardenability of 23MnCrMo5-5, unpublished work.

  32. 32.

    T. Jia, M. Militzer: Metall Mater Trans A Feb. 2015, vol. 46A (2), pp. 614–621. 10.1007/s11661-014-2659-5

    Article  Google Scholar 

  33. 33.

    A. Matsuzaki, H. Bhadeshia: Mater Sci Technol 1999, vol. 15 (5), pp. 518–522. 10.1179/026708399101506210

    Article  Google Scholar 

  34. 34.

    C. Garcia-Mateo, C. Capdevilla, F.G. Caballero, and C.G. de Andrés: ISIJ Int., 2008, vol. 48(9), pp. 1270–75. http://jlc.jst.go.jp/JST.JSTAGE/isijinternational/48.1270?from=Google.

  35. 35.

    C. Garcia-Mateo, J. Cornide, C. Capdevilla, F.G. Caballero, and C.G. de Andrés: ISIJ Int., 2008, vol. 48(9), pp. 1276–79. http://jlc.jst.go.jp/JST.JSTAGE/isijinternational/48.1276?from=Google.

  36. 36.

    K. He and D.V. Edmonds: Mater. Sci. Technol., 2002, vol. 18(3), pp. 289–96, DOI:10.1179/026708301225000743.

Download references

Acknowledgments

The authors are grateful to Vanitec for financial support of the present work and to Kira J. Weissman for careful proofreading of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Sourmail.

Additional information

Manuscript submitted October 8, 2016.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sourmail, T., Garcia-Mateo, C., Caballero, F.G. et al. The Influence of Vanadium on Ferrite and Bainite Formation in a Medium Carbon Steel. Metall and Mat Trans A 48, 3985–3996 (2017). https://doi.org/10.1007/s11661-017-4188-5

Download citation