Advertisement

Metallurgical and Materials Transactions A

, Volume 48, Issue 9, pp 3985–3996 | Cite as

The Influence of Vanadium on Ferrite and Bainite Formation in a Medium Carbon Steel

  • T. Sourmail
  • C. Garcia-Mateo
  • F. G. Caballero
  • S. Cazottes
  • T. Epicier
  • F. Danoix
  • D. Milbourn
Article

Abstract

The influence of vanadium additions on transformation kinetics has been investigated in a medium carbon forging steel. Using dilatometry to track transformation during continuous cooling or isothermal transformation, the impact of vanadium on both ferrite-pearlite and bainite has been quantified. Transmission electron microscopy and atom probe tomography have been used to establish whether vanadium was present in solid solution, or as clusters and precipitates. The results show that vanadium in solid solution has a pronounced retarding influence on ferrite-pearlite formation and that, unlike in the case of niobium, this effect can be exploited even during relatively slow cooling. The influence on bainite transformation was found to depend on temperature; an explanation in terms of the effect of vanadium on heterogeneous nucleation is tentatively proposed.

Notes

Acknowledgments

The authors are grateful to Vanitec for financial support of the present work and to Kira J. Weissman for careful proofreading of the manuscript.

References

  1. 1.
    R. Lagneborg, T. Siwecki, S. Zajac, and B. Hutchinson: Scand J Metall 1999, vol. 28, pp. 186–241.Google Scholar
  2. 2.
    G. Tweedale: Sheffield Steel and America: 1st Edition: Cambridge University Press, 1987.Google Scholar
  3. 3.
    J. Bellus, P. Dierickx, V. Jacot, and M. Robelet: Steel and Method for Making Cleavable Parts, European Patent ep1051531b1, 1998.Google Scholar
  4. 4.
    J. Bellus, P. Joly, C. Pichard, V. Jacot, C. Tomme, and D. Robat: Process for Manufacturing Steel Forging, European Patent ep0787812b1, 1996.Google Scholar
  5. 5.
    G. Gomez, T. Perez, H. K. D. H. Bhadeshia: Mater Sci Technol 2009, vol. 25, pp. 1502–1507.Google Scholar
  6. 6.
    G. Gomez, T. Perez, H. K. D. H. Bhadeshia: Mater Sci Technol 2009, vol. 25, pp. 1508–1512.CrossRefGoogle Scholar
  7. 7.
    T. Sourmail, H. Michaud, E. d’Eramo, and G. Baudry: in: 2nd International Conf. Super High Strength Steels, D.I. di Metallurgia, eds., AIM, Verona, Italy, 2016.Google Scholar
  8. 8.
    S. Engineer, H. Justinger, P. Janssen, M. Härtel, C. Hampel, and F. Randelhoff: in: 3rd International Conference on Steels for Cars and Trucks, H.-J. Wieland, ed., TEMA Technologie Marketing AG, Salzburg, 2011, pp. 404–11.Google Scholar
  9. 9.
    K.-I. Sugimoto and N. Yoshikawa: in: 3rd International Conference on Steels for Cars and Trucks, H.-J. Wieland, ed., TEMA Technologie Marketing AG, Salzburg, 2011, pp. 460–67.Google Scholar
  10. 10.
    S. Hasler, H. Roelofs, M. Lembke, and F.G. Caballero: in: 3rd International Conference on Steels for Cars and Trucks, H.-J. Wieland, ed., TEMA Technologie Marketing AG, Salzburg, 2011, pp. 330–37.Google Scholar
  11. 11.
    C. Keul, L. Moseker, W. Bleck, T. Rekersdrees, A. Stuber, H. Schliephake, C. Beyer, and H.-W. Raedt: in: 3rd International Conference on Steels for Cars and Trucks, H.-J. Wieland, ed., TEMA Technologie Marketing AG, Salzburg, 2011, pp. 208–17.Google Scholar
  12. 12.
    M.I. Goldshtein and S.G. Guterman: Metal Sci. Heat Treat. 1964, vol. 6(7), pp. 440–42. http://www.springerlink.com/index/Q1664785027W1271.pdf.
  13. 13.
    Woodhead, J.H.: in: Proceedings: Metals Society, Chicago, 1979, pp. 3–10.Google Scholar
  14. 14.
    P. Mangonon: Journal of Heat Treating 1980, vol. 1 (4), pp. 47–60. doi: 10.1007/BF02833255 CrossRefGoogle Scholar
  15. 15.
    P. Mangonon: Metall Trans A 1982, vol. 13 (2), pp. 319–320.  10.1007/BF02643323 CrossRefGoogle Scholar
  16. 16.
    J.W. Woodhead: in: Vanadium in High Strength Steel, Proc. Vanitec Seminar, Chicago, 1983, pp. 3–10.Google Scholar
  17. 17.
    B. Garbarz, F. B. Pickering: Materials Science and Technology Feb. 1988, vol. 4 (2), pp. 117–126.  10.1179/mst.1988.4.2.117 CrossRefGoogle Scholar
  18. 18.
    K. A. Taylor, S. S. Hansen: Metall Trans A 1991, vol. 22 (10), pp. 2359–2374.  10.1007/BF02665002 CrossRefGoogle Scholar
  19. 19.
    H. Adrian: Mater Sci Technol 1999, vol. 15 (4), pp. 366–378.  10.1179/026708399101505987 CrossRefGoogle Scholar
  20. 20.
    M. Enomoto, N. Nojiri, Y. Sato: Materials Transactions, JIM 1994, vol. 35 (12), pp. 859–867.CrossRefGoogle Scholar
  21. 21.
    C. Chen, F. Zhang, Z. Yang, C. Zheng: Materials & Design Oct. 2015, vol. 83, pp. 422–430.CrossRefGoogle Scholar
  22. 22.
    S. Preston: J. Heat Treat. 1990, vol. 8 (2), pp. 93–99.  10.1007/BF02831629 CrossRefGoogle Scholar
  23. 23.
    C. Garcia-Mateo, L. Morales-Rivas, F. Caballero, D. Milbourn, and T. Sourmail: Metals, 2016, vol. 6(6), pp. 130. http://www.mdpi.com/2075-4701/6/6/130.
  24. 24.
    S. Bechet, L. Beaujard: Rev Métall 1955, vol. 10, pp. 830–836.CrossRefGoogle Scholar
  25. 25.
    C. G. de Andrés, F. Caballero, C. Capdevila, D. S. Martin: Materials Characterization 2003, vol. 49, pp. 121–127.CrossRefGoogle Scholar
  26. 26.
    L. Germain, N. Gey, R. Mercier, P. Blaineau, M. Humbert: Acta Mater 2012, vol. 60, pp. 4551–4562.CrossRefGoogle Scholar
  27. 27.
    D. Acevedo-Reyes: Evolution de l’état de précipitation au cours de l’austénitisation d’aciers microalliés au vanadium et au niobium: Ph.D. thesis: INSA de Lyon 2007. https://hal.archives-ouvertes.fr/tel-00511332/.
  28. 28.
    F. Danoix, G. Grancher, A. Bostel, and D. Blavette: Ultramicroscopy, 2007, vol. 107(9), pp. 739–43.Google Scholar
  29. 29.
    R. Stasko, H. Adrian, A. Adrian: Mater Charact 2006, vol. 56, pp. 340–347.CrossRefGoogle Scholar
  30. 30.
    W. Steven, A. G. Haynes: J. I. S. I. 1983, vol. 1965, pp. 349–359.Google Scholar
  31. 31.
    T. Sourmail and H. Rouyer: Effect of niobium on the hardenability of 23MnCrMo5-5, unpublished work.Google Scholar
  32. 32.
    T. Jia, M. Militzer: Metall Mater Trans A Feb. 2015, vol. 46A (2), pp. 614–621.  10.1007/s11661-014-2659-5 CrossRefGoogle Scholar
  33. 33.
    A. Matsuzaki, H. Bhadeshia: Mater Sci Technol 1999, vol. 15 (5), pp. 518–522.  10.1179/026708399101506210 CrossRefGoogle Scholar
  34. 34.
    C. Garcia-Mateo, C. Capdevilla, F.G. Caballero, and C.G. de Andrés: ISIJ Int., 2008, vol. 48(9), pp. 1270–75. http://jlc.jst.go.jp/JST.JSTAGE/isijinternational/48.1270?from=Google.
  35. 35.
    C. Garcia-Mateo, J. Cornide, C. Capdevilla, F.G. Caballero, and C.G. de Andrés: ISIJ Int., 2008, vol. 48(9), pp. 1276–79. http://jlc.jst.go.jp/JST.JSTAGE/isijinternational/48.1276?from=Google.
  36. 36.
    K. He and D.V. Edmonds: Mater. Sci. Technol., 2002, vol. 18(3), pp. 289–96, DOI: 10.1179/026708301225000743.

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • T. Sourmail
    • 1
  • C. Garcia-Mateo
    • 2
  • F. G. Caballero
    • 2
  • S. Cazottes
    • 3
  • T. Epicier
    • 3
  • F. Danoix
    • 4
  • D. Milbourn
    • 5
  1. 1.Asco Industries Research (CREAS)HagondangeFrance
  2. 2.Department of Physical MetallurgyNational Center for Metallurgical Research (CENIM-CSIC)MadridSpain
  3. 3.Univ. Lyon, INSA-Lyon, MATEIS, CNRS UMR 5510, University Claude Bernard Lyon IVilleurbanneFrance
  4. 4.Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des MatériauxRouenFrance
  5. 5.Vanitec Ltd.Tunbridge WellsUK

Personalised recommendations