Precipitation Effect on Mechanical Properties and Phase Stability of High Manganese Steel

Abstract

High manganese (Mn) steels are attractive for automotive applications due to their excellent tensile strength and superior elongation. However, the relatively low yield strength of Mn steels compared to other advanced high-strength steels is a critical problem limiting their use in structural parts. In order to increase the yield strength, the precipitation hardening effect of Mn steels was investigated by the addition of carbide-forming elements. Changes in the austenite phase stability were also evaluated in terms of stacking fault energy (SFE). As a result, fine V(C,N) precipitates were found to increase the yield strength effectively but to lower the SFE by the consumption of matrix carbons. For achieving precipitation hardening without sacrificing austenite stability, the soluble carbon content was discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    G. Frommeyer, U. Brüx and P. Neumann, ISIJ Int., 2003, vol. 43, pp. 438-46

    Article  Google Scholar 

  2. 2.

    2. A. S. Hamada, L. P. Karjalainen and M. C. Somani, Mater. Sci. Eng. A, 2007, vol. 467, pp. 114-24

    Article  Google Scholar 

  3. 3.

    3. J. Kim, S.-J. Lee and B. C. De Cooman, Scripta Mater., 2011, vol. 65, pp. 363-6

    Article  Google Scholar 

  4. 4.

    4. K. Renard and P. J. Jacques, Mater. Sci. Eng. A, 2012, vol. 542, pp. 8-14

    Article  Google Scholar 

  5. 5.

    5. R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura and K. Kunishige, Scripta Mater., 2008, vol. 59, pp.963-6

    Article  Google Scholar 

  6. 6.

    6. S. Vercammen, B. Blanpain, B. C. De Cooman and P. Wollants, Acta Mater., 2004, vol.52, pp. 2005-12

    Article  Google Scholar 

  7. 7.

    7. O. Bouaziz, S. Allain, C. P. Scott, P. Cugy and D. Barbier, Curr. Opin. Solid State Mater. Sci., 2011, vol. 15, pp. 141-68

    Article  Google Scholar 

  8. 8.

    8. O. Grässel, L. Krüger, G. Frommeyer and L. W. Meyer, Int. J. Plasticity, 2000, vol. 16, pp. 1391-409

    Article  Google Scholar 

  9. 9.

    9. H. Hofmann, D. Mattissen and T. W. Schaumann, Mater.Sci.Eng., 2006, vol. 37, pp. 716-23

    Google Scholar 

  10. 10.

    10. D. Z. Li, Y. H. Wei, B. S. Xu, L. F. Hou and P. D. Han, Ironmaking & Steelmaking, 2011, vol. 38, pp. 540-5

    Article  Google Scholar 

  11. 11.

    11. O. Bouaziz, S. Allain and C. Scott, Scripta Mater., 2008, vol. 58, pp. 484-7

    Article  Google Scholar 

  12. 12.

    12. S. Kang, Y.-S. Jung, J.-H. Jun and Y.-K. Lee, Mater. Sci. Eng. A, 2010, vol. 527, pp. 745-51

    Article  Google Scholar 

  13. 13.

    13. J.B. Seol, D. Raabe, P. Choi, H.S. Park, J.H. Kwak, C.G. Park, Scripta Mater., 2013, vol. 68, pp. 348-53

    Article  Google Scholar 

  14. 14.

    14. Raabe, D. Ponge, D. Dmitrieva, O. Sander, B., Scripta Mater., 2009, vol. 60, pp. 1141-4

    Article  Google Scholar 

  15. 15.

    15. Gutierrez-Urrutia, I. Raabe, D., Scripta Mater., 2013, vol. 68, pp. 343-7

    Article  Google Scholar 

  16. 16.

    16. Laha, Kinkar, Kyono, J, Shinya, Norio, Metall. Mater. Trans. A, 2012, vol. 43, pp. 1187-97

    Article  Google Scholar 

  17. 17.

    17. S. Allain, J. P. Chateau, O. Bouaziz, S. Migot and N. Guelton, Mater. Sci. Eng. A, 2004, vol. 387, pp. 158-62

    Article  Google Scholar 

  18. 18.

    18. X. Peng, D. Zhu, Z. Hu, W. Yi, H. Liu and M. Wang, Mater. Design, 2013, vol. 45, pp. 518-23

    Article  Google Scholar 

  19. 19.

    19. D. T. Pierce, J. Bentley, J. A. Jiménez and J. E. Wittig, Scripta Mater., 2012, vol. 66, pp. 753-6

    Article  Google Scholar 

  20. 20.

    20. N. Tsuji, Y. Ito, Y. Saito and Y. Minamino, Scripta Mater., 2002, vol. 47, pp. 893-9

    Article  Google Scholar 

  21. 21.

    21. Kim, Y. W.; Kim, J. H.; Hong, S.-G.; Lee, C. S. Mater. Sci. Eng. A, 2014, vol. 605, pp. 244-52

    Article  Google Scholar 

  22. 22.

    22. P. H. Adler, G. B. Olson and W. S. Owen, Metall. Mater. Trans. A, 1986, vol. 17, pp. 1725-37

    Article  Google Scholar 

  23. 23.

    23. A. Saeed-Akbari, J. Imlau, U. Prahl and W. Bleck, Metall. Mater. Trans. A, 2009, vol. 40, pp. 3076-90

    Article  Google Scholar 

  24. 24.

    24. J. P. Hirth, Metall. Trans., 1970, vol. 1, pp. 2367-74

    Article  Google Scholar 

  25. 25.

    25. G. B. Olson and M. Cohen, Metall. Trans. A, 1976, vol. 7, pp. 1897-904

    Google Scholar 

  26. 26.

    26. G. B. Olson and M. Cohen, Metall. Trans. A, 1976, vol. 12, pp. 1905-14

    Google Scholar 

  27. 27.

    27. D. Dew-Hughes and L. Kaufman, Calphad, 1979, vol. 3, pp. 175-203

    Article  Google Scholar 

  28. 28.

    28. J. F. Breedis and L. Kaufman, Metall. Trans., 1971, vol. 2, pp. 2359-71

    Article  Google Scholar 

  29. 29.

    29. A. K. Niessen and F. R. De Boer, J. Less Common Metals, 1981, vol. 82, pp. 75-80

    Article  Google Scholar 

  30. 30.

    30. J. P. Chateau, A. Dumay, S. Allain and A. Jacques, J. Phys., 2010, vol. 240, pp.12-23

    Google Scholar 

  31. 31.

    J. H. Ryu, S. K. Kim, C. S. Lee, D.-W. Suh and H. K. D. H. Bhadeshia, Proc. R. Soc. A, 2013, vol. 469, 20120458

    Article  Google Scholar 

  32. 32.

    32. Y. Tomota, M. Strum and J. W. Morris, Metall. Trans. A, 1991, vol. 18, pp. 1073-81

    Article  Google Scholar 

  33. 33.

    33. Y. S. Chun, J. S. Kim, K.-T. Park, Y.-K. Lee and C. S. Lee, Mater. Sci. Eng. A, 2012, vol. 533, pp. 87-95

    Article  Google Scholar 

  34. 34.

    34. C. P. Scott and J. Drillet, Scripta Mater., 2007, vol. 56, pp. 489-92

    Article  Google Scholar 

  35. 35.

    35. M. X. Zhang and P. M. Kelly, Mater. Charac., 1998, vol. 40, pp. 159-68

    Article  Google Scholar 

  36. 36.

    36. L. Remy and A. Pineau, Mater. Sci. Eng., 1977, vol. 28, pp. 99-107

    Article  Google Scholar 

  37. 37.

    T. Kato, M. Fujikura, K. Ishida, A. Kimura, Y. Takeuchi, N. Kawasaki, S. Yahagi, Trans. ISIJ, 1981, vol. 21, pp. 852-61

    Article  Google Scholar 

  38. 38.

    38. H. Gleiter and E. Hornbogen, Mater. Sci. Eng., 1968, vol. 2, pp. 285-302

    Article  Google Scholar 

  39. 39.

    39. T. Gladman, Mater. Sci. Tech., 1999, vol. 15, pp.30-6

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed with the support from POSCO and the Human Resources Development program (No. 20154030200680) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea Government Ministry of Trade, Industry and Energy.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jongryoul Kim.

Additional information

Manuscript submitted December 4, 2016.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bae, C., Kim, R., Lee, U. et al. Precipitation Effect on Mechanical Properties and Phase Stability of High Manganese Steel. Metall and Mat Trans A 48, 4072–4079 (2017). https://doi.org/10.1007/s11661-017-4168-9

Download citation