Skip to main content
Log in

Investigation of the Microstructural, Mechanical and Corrosion Properties of Grade A Ship Steel-Duplex Stainless Steel Composites Produced via Explosive Welding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Grade A ship-building steel-AISI 2304 duplex stainless steel composite plates were manufactured via explosive welding. The AISI 2304 plates were used to clad the Grade A plates. Optical microscopy studies were conducted on the joining interface for characterization of the manufactured composite plates. Notch impact, tensile-shear, microhardness, bending and twisting tests were carried out to determine the mechanical properties of the composites. In addition, the surfaces of fractured samples were examined by scanning electron microscopy (SEM), and neutral salt spray (NSS) and potentiodynamic polarization tests were performed to examine corrosion behavior. Near the explosion zone, the interface was completely flat, but became wavy as the distance from the explosion zone increased. The notch impact tests indicated that the impact strength of the composites decreased with increasing distance from the explosion zone. The SEM studies detected brittle behavior below the impact transition temperature and ductile behavior above this temperature. Microhardness tests revealed that the hardness values increased with increasing distance from the explosion zone and mechanical tests showed that no visible cracking or separation had occurred on the joining interface. The NSS and potentiodynamic polarization tests determined that the AISI 2304 exhibited higher corrosion resistance than the Grade A steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. M. Kwiecien, J. Majta and D. Dziedzic: Arch. Civil. Mech. Eng, 2014, vol. 14, pp. 32-9.

    Article  Google Scholar 

  2. R. Ma, Y. Wang, J. Wu and M. Duan: Fusion. Eng. Design, 2014, vol. 89, pp. 3117-24.

    Article  Google Scholar 

  3. T.N. Prasanthi, C. SudhaRavikirana, S. Saroja: Mater. Design, 2016, vol. 93, pp. 180-193.

    Article  Google Scholar 

  4. M. Gloc, M. Wachowski, T. Plocinski, K. JanKurzydlowski: J. Alloys Compd., 2016, vol. 671, pp. 446-451.

    Article  Google Scholar 

  5. L. Tricarico and R. Spina: Mater. Design, 2010, vol. 31, pp. 1981-92.

    Article  Google Scholar 

  6. X. Guo, H. Wang, Z. Liu, L. Wang, F. Ma and J. Tao: Int. J. Adv. Manuf. Technol, 2016, vol. 82, pp. 543-8.

    Article  Google Scholar 

  7. I. Samardzic, B. Matesa and I. Kladaric: Metalurgija, 2011, vol. 50(3), pp. 159-62.

    Google Scholar 

  8. V. N. Arisova, Y. P. Trykov, I. A. Ponomareva, E. V. Miroshnikova (2014) Rus. J. Non-Ferrous Metals 55(1): 46-50.

    Article  Google Scholar 

  9. H. Amani and M. Soltanieh: Metallurgical Mater. Transac. B, 2016, vol. 47(4), pp. 2524-34.

    Article  Google Scholar 

  10. J.Z. Ashani and S.M. Bagheri: Mater. Werkst. 2009, vol .40, pp. 690-8.

    Article  Google Scholar 

  11. D. M. Fronczek, J. Wojewoda-Budka, R. Chulist, A. Sypien A. Korneva, Z. Szulc, N. Schell, P. Zieba (2016) Mater. Design 91:80-89.

    Article  Google Scholar 

  12. N. Kahraman, B. Gülenç and F. Fındık: Int. J. Imp. Eng, 2007, vol. 34, pp. 1423-32.

    Article  Google Scholar 

  13. N. Kahraman and B. Gülenç: J. Mater. Process. Tech, 2005, vol. 169, pp. 67-71.

    Article  Google Scholar 

  14. R. Kaçar and M. Acarer: J. Mater. Process. Tech, 2004, vol. 152, pp. 91-6.

    Article  Google Scholar 

  15. W. Jiang, Y. Luo, G. Zhang, W. Woo and S.T. Tu: Mater. Design, 2013, vol. 51, pp. 1052-9.

    Article  Google Scholar 

  16. L.J. Zhang, Q. Pei, J.X. Zhang, Z.Y. Bi and P.C. Li: Mater. Design, 2014, vol. 64, pp. 462-76.

    Article  Google Scholar 

  17. R. Kaçar and M. Acarer: Mater. Sci. Eng. A, 2003, vol. 363, pp. 290-6.

    Article  Google Scholar 

  18. Y. Kaya and N. Kahraman: Mater. Design, 2013, vol. 52, pp. 367-72.

    Article  Google Scholar 

  19. M. Prazmowski, D. Rozumek and H. Paul: Eng. Failure Analysis, 2017, vol. 75, pp 71-81.

    Article  Google Scholar 

  20. Q. Chu, M. Zhang, J. Li and C. Yan: Mater. Sci. Eng. A, 2017, vol. 689, pp 323-31.

    Article  Google Scholar 

  21. B. Wang, F. Xie, X. Luo, J. Zhou (2016) J. Mater. Res. Tech, 5(4):333-338.

    Article  Google Scholar 

  22. B. Gülenç, Y. Kaya, A. Durgutlu, İ.T. Gülenç, M.S. Yıldırım and N. Kahraman: Arch. Civil. Mech. Eng, 2016, vol. 16, pp. 1-8.

    Article  Google Scholar 

  23. S. Belyaev, V. Rubanik, N. Resnina, V. Rubanik Jr., E. Demidova and I. Lomakin: J. Mater. Process. Tech, 2016, vol. 234, pp. 323-31.

    Article  Google Scholar 

  24. D. V. Lazurenko, I. A. Bataev, V. I. Mali, A. A. Bataev, I. N. Maliutina, V. S. Lozhkin, M. A. Esikov, A. M. J. Jorge (2016) Mater. Design 102:122-130.

    Article  Google Scholar 

  25. G. Miao, H. Ma, Z. Shen and Y. Yu: Mater. Design, 2014, vol. 63, pp. 538-43.

    Article  Google Scholar 

  26. M. Acarer, B. Gülenç and F. Fındık: J. Mater. Sci. 2004, vol. 39(21), pp. 6457-66.

    Article  Google Scholar 

  27. M. Acarer, B. Gülenç and F. Fındık: Mater. Design, 2003, vol. 24, pp. 659-64.

    Article  Google Scholar 

  28. A.A. Akbari Mousavi and S.T.S. Al-Hassani: J. Mech. Phys. Solids, 2005, vol. 53, pp. 2501-28.

    Article  Google Scholar 

  29. Y. Kaya: Ph D Thesis, Karabük University, TR, 2014, pp. 1–215.

  30. W.F. Smith: Structure and Properties of Engineering alloys. 2 nd ed., McGraw-Hill, Inc., New York: 1981.

    Google Scholar 

  31. N. Kahraman, B. Gülenç and F. Fındık: J. Mater. Process. Tech, 2005, vol. 169, pp. 127-33.

    Article  Google Scholar 

  32. M. Asemabadi, M. Sedighi and M. Honarpisheh: Mater. Sci. Eng. A, 2012, vol. 558, pp. 144-9.

    Article  Google Scholar 

  33. M.H. Bina, F. Dehghani and M. Salimi: Mater. Design, 2013, vol. 45, pp. 504-9.

    Article  Google Scholar 

  34. M. Yazdani, T.R. Toroghinejad and S.M. Hashemi: J. Mater. Eng. Perf, 2015, vol. 24, pp. 4032-43.

    Article  Google Scholar 

  35. M.M.H. Athar and B. Tolaminejad: Mater. Design, 2015, vol. 86, pp. 516-25.

    Article  Google Scholar 

  36. H.B. Xia, S.G. Wang and H.F. Ben: Mater. Design, 2014, vol. 56, pp. 1014-9.

    Article  Google Scholar 

  37. X. Guo, J. Tao, W. Wang, H. Li and C. Wang: Mater. Design, 2013, vol. 49, pp. 116-22.

    Article  Google Scholar 

  38. Y. Wang, H.G. Beom, M. Sun and S. Lin: Int. J. Imp. Eng, 2011, vol. 38, pp. 51-60.

    Article  Google Scholar 

  39. T. Mooney, 2003. ASM Handbook, Volume 13A-Corrosion: Fundamentals, Testing, and Protection. ASM International: New York

    Google Scholar 

  40. M. Acarer (2012) J. Mater. Eng. Perf 21(11):2375-2379.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank to MKE Barutsan Company, Turkey for kindly supplying the materials, equipment, and staff. This work was financially supported under Karabuk University Project (KBU-BAP-13/1-DR-012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakup Kaya.

Additional information

Manuscript submitted February 15, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, Y., Kahraman, N., Durgutlu, A. et al. Investigation of the Microstructural, Mechanical and Corrosion Properties of Grade A Ship Steel-Duplex Stainless Steel Composites Produced via Explosive Welding. Metall Mater Trans A 48, 3721–3733 (2017). https://doi.org/10.1007/s11661-017-4161-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4161-3

Navigation