Skip to main content

Advertisement

Log in

Microstructural and Mechanical Evolution of a Low Carbon Steel by Friction Stir Processing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A low carbon steel (Grade A) was subjected to friction stir processing (FSP), and the effect of FSP on the microstructure and mechanical properties was investigated systematically. It was found that two distinct zones called stir zone (SZ) and heat-effected zone (HAZ) were formed during FSP. The SZ and HAZ consist mainly of ferrite, widmanstatten ferrite, ferrite+cementite aggregates, and martensite. FSP considerably refined the microstructure of the steel by means of dynamic recrystallization mechanism and formed a volumetric defect-free basin-like processed region. The ferritic grain size of the steel decreased from 25 µm in the coarse-grained state to about 3 µm in the fine-grained state, and the grains formed were separated mostly by high angle of misorientation with low density of dislocations. This microstructural evolution brought about a considerable increase in both hardness and strength values without a considerable decrease in ductility. Ultrafine-grained microstructure formed around and just beneath the pin increased the hardness of the steel from 140 Hv0.3 to about 245 Hv0.3. However, no hardness uniformity was formed throughout the processed zone due to the changes in deformation- and temperature-induced microstructure. Both yield and tensile strength values of processed zone increased from 256 and 435 MPa to about 334 and 525 MPa, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Ozekcin, H.W. Jin, J.Y. Koo, N. V Bangaru, R. Ayer and G. Vaughn, A: Int. J. Offshore Polar Eng., 2004, vol.14, pp. 1053–5381.

    Google Scholar 

  2. P. Xue, B.L. Xiao, W.G. Wang, Q. Zhang, D. Wang, Q.Z. Wang, et al.: Mater. Sci. Eng. A., 2013, vol.575, pp. 30–34.

    Article  Google Scholar 

  3. G. Purcek, O. Saray, I. Karaman and T. Kucukomeroglu: Mater. Sci. Eng. A., 2008, vol.490, pp. 403–410.

    Article  Google Scholar 

  4. A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, et al.: CIRP Ann. - Manuf. Technol., 2008, vol. 57, pp. 716–735.

    Article  Google Scholar 

  5. R.Z. Valiev and T.G. Langdon: Prog. Mater. Sci., 2006, vol. 51, pp. 881–981.

    Article  Google Scholar 

  6. S.M. Aktarer, D.M. Sekban, O. Saray, T. Kucukomeroglu, Z.Y. Ma and G. Purcek: Mater. Sci. Eng. A., 2015, vol. 636, pp. 311–319.

    Article  Google Scholar 

  7. Z.Y. Ma: Metall. Mater. Trans. A., 2008, vol.39, pp. 642–658.

    Article  Google Scholar 

  8. R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng. R Reports., 2005, vol. 50, pp. 1–78.

    Article  Google Scholar 

  9. Y.N. Zhang, X. Cao, S. Larose and P. Wanjara: Can. Metall. Q., 2012, vol. 51, pp. 250–261.

    Article  Google Scholar 

  10. H.S. Arora, H. Singh and B.K. Dhindaw: Int. J. Adv. Manuf. Technol., 2012, vol. 61, pp. 1043–1055.

    Article  Google Scholar 

  11. R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng. R Reports., 2005, vol. 50, pp. 1–78.

    Article  Google Scholar 

  12. Y.C. Chen and K. Nakata: Mater. Charact., 2009, vol. 60, pp. 1471–1475.

    Article  Google Scholar 

  13. D.M. Sekban, O. Saray, S.M. Aktarer, G. Purcek and Z.Y. Ma: Mater. Sci. Eng. A., 2015, vol. 642, pp. 57–64.

    Article  Google Scholar 

  14. A. Chabok and K. Dehghani: Mater. Sci. Eng. A., 2010, vol. 528, pp. 309–313.

    Article  Google Scholar 

  15. C. Lorenzo-Martin and O.O. Ajayi: Wear, 2015, vol. 332-333, pp. 962–970.

    Article  Google Scholar 

  16. S.H. Aldajah, O.O. Ajayi, G.R. Fenske and S. David: Wear, 2009, vol. 267, pp. 350–355.

    Article  Google Scholar 

  17. A. Rahbar-kelishami, A. Abdollah-zadeh, M.M. Hadavi, R. A. Seraj and A.P. Gerlich: Appl. Surf. Sci., 2014, vol. 316, pp. 501–507.

    Article  Google Scholar 

  18. M.I. Costa, D. Verdera, M.T. Vieira and D.M. Rodrigues: Appl. Surf. Sci., 2014, vol. 296, pp. 214–220.

    Article  Google Scholar 

  19. S. Khodir, Y. Morisada and H. Fujii: J. Mater. Sci., 2013, vol. 48, pp. 4313–4320.

    Article  Google Scholar 

  20. P. Xue, Z.Y. Ma, Y. Komizo and H. Fujii: Mater. Lett., 2016, vol. 162, pp. 161–164.

    Article  Google Scholar 

  21. M. Abbasi, T.W. Nelson and C.D. Sorensen: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2012, vol. 43, pp. 4940–4946.

    Article  Google Scholar 

  22. N. Yasavol and H. Jafari: J. Mater. Eng. Perform., 2015, vol. 24, pp. 2151–2157.

    Article  Google Scholar 

  23. N. Yasavol, A. Abdollah-Zadeh, M.T. Vieira and H.R. Jafarian: Appl. Surf. Sci., 2014, vol. 293, pp. 151–159.

    Article  Google Scholar 

  24. Y. Morisada, H. Fujii, T. Mizuno, G. Abe, T. Nagaoka and M. Fukusumi: Surf. Coatings Technol., 2011, vol. 205, pp. 3397–3403.

    Article  Google Scholar 

  25. M.H. Razmpoosh, A. Zarei-Hanzaki and A. Imandoust: Mater. Sci. Eng. A., 2015, vol. 638, pp. 15–19.

    Article  Google Scholar 

  26. M.I. Costa, C. Leitão, A. Ramalho and D.M. Rodrigues: J. Mater. Process. Technol., 2015, vol. 217, pp. 272–277.

    Article  Google Scholar 

  27. A. Amirafshar and H. Pouraliakbar: Meas. J. Int. Meas. Confed., 2015, vol. 68, pp. 111–116.

    Article  Google Scholar 

  28. R. Li, T. Yuan, Z. Qiu, K. Zhou and J. Li: Surf. Coat. Technol., 2014, vol. 258, pp. 415–425.

    Article  Google Scholar 

  29. H.S. Grewal, H.S. Arora, H. Singh, A. Agrawal and S. Mukherjee: J. Tribol., 2014, vol. 136, pp 1-10.

    Article  Google Scholar 

  30. H.S. Grewal, H.S. Arora, H. Singh and A. Agrawal: Appl. Surf. Sci., 2013, vol. 268, pp. 547–555.

    Article  Google Scholar 

  31. S. Noh, R. Kasada, A. Kimura, S.H.C. Park and S. Hirano: J. Nucl. Mater., 2011, vol. 417, pp. 245–248.

    Article  Google Scholar 

  32. M. Hajian, A. Abdollah-zadeh, S.S. Rezaei-Nejad, H. Assadi, S.M.M. Hadavi, K. Chung, et al.: Mater. Des., 2015, vol. 67, pp. 82–94.

    Article  Google Scholar 

  33. J.D. Escobar, E. Velásquez, T.F.A. Santos, A.J. Ramirez and D. López: Wear., 2013, vol. 297, pp. 998–1005.

    Article  Google Scholar 

  34. S. Dodds, A.H. Jones and S. Cater: Wear., 2013, vol. 302, pp. 863–877.

    Article  Google Scholar 

  35. M. Mehranfar and K. Dehghani: Mater. Sci. Eng. A., 2011, vol. 528, pp. 3404–3408.

    Article  Google Scholar 

  36. Y.S. Sato, T.W. Nelson and C.J. Sterling: Acta Mater., 2005, vol. 53, pp. 637–645.

    Article  Google Scholar 

  37. International Institute for Welding Document IX-1533-88 IXJ-123-87 Revision 2, Guide to the Light Microscope Examination of Ferritic Steel Weld Metals., 1998.

  38. M. Jafarzadegan, A.H. Feng, A. Abdollah-Zadeh, T. Saeid, J. Shen and H. Assadi: Mater. Charact., 2012, vol. 74, pp. 28–41.

    Article  Google Scholar 

  39. G. Thewlis: Mater. Sci. Technol., 2004, vol. 20, pp. 143–160.

    Article  Google Scholar 

  40. X. He, F. Gu and A. Ball: Prog. Mater. Sci., 2014, vol. 65, pp. 1–66.

    Article  Google Scholar 

  41. S. Tutunchilar, M. Haghpanahi, M.K.B. Givi, P. Asadi and P. Bahemmat: Mater. Des., 2012, vol. 40, pp. 415–426.

    Article  Google Scholar 

  42. K.N. Krishnan: Mater. Sci. Eng. A., 2002, vol. 327, pp. 246–251.

    Article  Google Scholar 

  43. K. Kumar and S. V Kailas: Mater. Sci. Eng. A., 2008, vol. 485, pp. 367–374.

    Article  Google Scholar 

  44. M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, W.H. Bingel and R.A. Spurling: Metall. Mater. Trans. A., 1998, vol. 29, pp. 1955–1964.

    Article  Google Scholar 

  45. M.A. Sutton, B. Yang, A.P. Reynolds and R. Taylor: Mater. Sci. Eng. A., 2002, vol. 323, pp. 160–166.

    Article  Google Scholar 

  46. T. Lienert and W.S. Jr: Weld. J. Res. Suppl., 2003, vol. 82, pp. 1–9.

    Google Scholar 

  47. J.-H. Cho, D.E. Boyce and P.R. Dawson: Mater. Sci. Eng. A., 2005, vol. 398, pp. 146–163.

    Article  Google Scholar 

  48. P. Cizek, F. Bai, W.M. Rainforth and J.H. Beynon: Mater. Trans., 2004, vol. 45, pp. 2157–2164.

    Article  Google Scholar 

  49. S.F. Di Martino and G. Thewlis: Metall. Mater. Trans. A., 2014, vol. 45, pp. 579–594.

    Article  Google Scholar 

  50. P.L. Threadgill: Sci. Technol. Weld. Join., 2007, vol. 12, pp. 357–360.

    Article  Google Scholar 

  51. J.C. Lippold: Welding Metallurgy and Weldability, Wiley, Ohio, USA, 2014.

    Google Scholar 

  52. J. Benjamin: Sci. Am., 1976, vol 234(5), pp. 40–48.

    Article  Google Scholar 

  53. B. Burton: Philos. Mag. A., 2002, vol. 82, pp. 2303–2320.

    Article  Google Scholar 

  54. I. Milas and E.A. Carter: J. Mater. Sci., 2009, vol. 44, pp. 1741.

    Article  Google Scholar 

  55. C.B. Smith, W. Crusan, J.R. Hootman, J.F. Hinrichs, R.J. Heideman and J.S. Noruk: 2001 TMS Annu. Meet. Automot. Alloy. Join. Alum. Symp. (Aluminum 2001), 2001, pp. 175–185.

  56. Y. Sugino, S. Ukai, B. Leng, N. Oono, S. Hayashi, T. Kaito, et al.: J. Nucl. Mater., 2014, vol. 452, pp. 628–632.

    Article  Google Scholar 

  57. J.-Q. Su, T.W. Nelson and C.J. Sterling: Mater. Sci. Eng. A., 2005, vol. 405, pp. 277–286.

    Article  Google Scholar 

  58. P.B. Prangnell and C.P. Heason: Acta Mater., 2005, vol. 53, pp. 3179–3192.

    Article  Google Scholar 

Download references

Acknowledgments

Dr. G. Purcek was supported by The World Academy of Sciences (TWAS) under the Visiting Researchers Program of TWAS-UNESCO Associateship Scheme (Ref. 3240260896). The authors would like to thank Dr. T. Kucukomeroglu for his help in conducting the FSP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gencaga Purcek.

Additional information

Manuscript submitted January 11, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekban, D.M., Aktarer, S.M., Zhang, H. et al. Microstructural and Mechanical Evolution of a Low Carbon Steel by Friction Stir Processing. Metall Mater Trans A 48, 3869–3879 (2017). https://doi.org/10.1007/s11661-017-4157-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4157-z

Navigation