Skip to main content
Log in

Formation of Three-Dimensional ZnO Microflowers from Self-Assembled ZnO Microdiscs

  • Topical Collection: Characterization of Minerals, Metals, and Materials 2017
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Three-dimensional zinc oxide (ZnO) microflowers of average diameter 1.1 ± 0.25 µm were produced in this work by the spray pyrolysis (SP) method in thin film form on glass substrates at a substrate temperature of 350 ± 5 °C. X-ray diffraction revealed that the films are hexagonal (wurtzite) with high crystallinity and preferred (002) orientation. Scanning electron microscope (SEM) images revealed the morphology of the films, which consists of hexagonal microdiscs, and these microdiscs self-assembled into three-dimensional microflowers. The hexagonal microdiscs have noticeable thickness and average size of 500 ± 130 nm. The microflowers have hexagonal shapes, and some of them are linked together to form larger three-dimensional structures. Assembling of the microdiscs and formation of the three-dimensional hexagonal flowers occurred during the deposition process without the aid of any surfactant. X-ray energy dispersive spectroscopy (EDX) showed that the films are non-stoichiometric, and they contain chlorine besides Zn and O. These three-dimensional flowers are of potential use in several technological applications such as gas sensors, electronic devices, and solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Yan and D. Xue: J. Cryst. Growth, 2008, vol. 310, pp. 1836-40.

    Article  Google Scholar 

  2. J.H. Yang, J.H. Zheng, H.J. Zhai, L.L. Yang, J.H. Lang, M. Gao: J. Alloy. Compd., 2009, vol. 481, pp. 628-31.

    Article  Google Scholar 

  3. N. Ekthammathat, A. Phuruangrat, S. Thongtem, T. Thongtem: Digest Journal of Nanomaterials and Biostructures, 2015, vol. 10 (1), pp. 149-53.

    Google Scholar 

  4. Kang DS, Seok KH, Sang MY, Kim JG, Hwang WJ, Hong SK, Lee JW, JEONG YL, Song JH, Yao T: Journal of the Korean Physical Society, 2008, vol. 53, pp. 292-98.

    Google Scholar 

  5. Y.C. Liang, X.S. Deng, H. Zhong: Ceram. Int., 2012, vol. 38, pp. 2261-67.

    Article  Google Scholar 

  6. A. Lei, B. Qu,W. Zhou, Y.Wang, Q. Zhang, B. Zou: Mater. Lett., 2012, vol. 66, pp. 72-5.

    Article  Google Scholar 

  7. Y.J. Lee, N.K. Park, G.B. Han, S.O. Ryu, T.J. Lee, C.H. Chang: Curr. Appl. Phys., 2008, vol. 8, pp. 746-51.

    Article  Google Scholar 

  8. R. Habibi, A.M. Rashidi, J.T. Daryan, A. Mohamad-ali-zadeh: Appl. Surf. Sci., 2010, vol. 257, pp. 434-9.

    Article  Google Scholar 

  9. Y. Wang, X. Li, N. Wang, X. Quan, Y. Chen: Sep. Purif. Technol., 2008, vol. 62, pp. 727-32.

    Article  Google Scholar 

  10. D. Geetha, T. Thilagavathi: Digest Journal of Nanomaterials and Biostructures, 2010, vol. 5(1), pp. 297 – 01.

    Google Scholar 

  11. S. Nicolay, M. Benkhaira, L. Ding, J. Escarre, G. Bugnon, F. Meillaud, C. Ballif: Sol. Eng. Mat. Sol. Cells, 2012, vol. 105, pp. 46–52.

    Article  Google Scholar 

  12. S. Faÿ, J. Steinhauser, S.Nicolay, C.Ballif: Thin Solid Films, 2009, vol. 518, pp. 2961-66.

    Article  Google Scholar 

  13. A. Hongsingthong, I.A. Yunaz, S. Miyajima M. Konagai: Proceedings of the 35th IEEE Photovoltaic Specialists Conference, 2010, pp. 1508-11.

  14. O. Kluth, G. Schöpe, J. Hüpkes, C. Agashe, J. Müller, B. Rech: Thin Solid Films, 2003, vol. 442, pp. 80-5.

    Article  Google Scholar 

  15. Y. Chen, H.-J. Ko, S.-K. Hong, Y. Segawa, T. Yao: Appl. Phys. Lett., 2002, vol. 80, pp. 1358-60.

    Article  Google Scholar 

  16. Ohyama M, Kozuka H, Yoko T: ‎J. Am. Ceram. Soc., 1998, vol. 81, 1622-32.

    Article  Google Scholar 

  17. Shadia Ikhmayies: J. Electron. Mater., 2016, vol. 45(8), pp. 3964- 9.

    Article  Google Scholar 

  18. S. Cho, S.H. Jung, K.H. Lee: J. Phys. Chem. C, 2008, vol. 112, pp. 12769-76.

    Article  Google Scholar 

  19. Hamid Tajizadegan, Majid Jafari, Mehdi Rashidzadeh, Reza Ebrahimi-Kahrizsangi, Omid Torabi: J. Mater. Sci. Technol., 2013, vol. 29(10), 915-18.

    Article  Google Scholar 

  20. X. Qu, D. Jia: Mater. Lett., 2009, vol. 63, pp. 412-4.

    Article  Google Scholar 

  21. J. Li, G. Lu, Y. Wang, Y. Guo, Y. Guo: J. Colloid. Interface. Sci., 2012, vol. 377, pp. 191-6.

    Article  Google Scholar 

  22. Jin Chang, Muhammad Z. Ahmad, Wojtek Wlodarski, and Eric R. Waclawik: Sensors, 2013, vol. 13, pp. 8445-60.

    Article  Google Scholar 

  23. Abbasi MA, Khan Y, Hussain S, Nur O, Willander M: Vacuum, 2012, vol. 86 (12), pp. 1998-2001.

    Article  Google Scholar 

  24. Samanta PK, Chaudhuri PR: Mater Lett., 2012, vol. 68, pp. 510–12.

    Article  Google Scholar 

  25. Lei Wang,   Dong Zhao,   Sheng-Liang Zhong, and   An-Wu Xu: Cryst. Eng. Comm., 2012, vol. 14, pp. 6875-80.

    Article  Google Scholar 

  26. Ding J, Fang X, Yang R, Kan B, Li X, Yuan N: Nanoscale Research Letters, 2014, vol. 9, 1-6.

    Article  Google Scholar 

  27. Lexi Zhang, Jianghong Zhao, Haiqiang Lu, Liming Gong, Li Li, Jianfeng Zheng, Hui Li, Zhenping Zhu: Sensor Actuator. B, 2011, vol. 160, pp. 364-70.

    Article  Google Scholar 

  28. A. Kamalianfar, S.A.Halim, Mahmoud Goodarz Naseri, M. Navasery, Fasih Ud Din, J. A. M. Zahedi, K.P.Lim, E.B.Saion, C.K.Chen, and A.Lavari Monfared: Int. J. Electrochem. Sci., 2013, vol. 8, pp. 7724 – 33.

    Google Scholar 

  29. Wahab R, Ansari SG, Kim YS, Seo HK, Kim GS, Khang G, Shin HS: Materials Research Bulletin, 2007, vol. 42, pp. 1640–48.

    Article  Google Scholar 

  30. Anlian Pan, Richeng Yu, Sishen Xie, Zebo Zhang, Changqing Jin, Bingsuo Zou: Journal of Crystal Growth., 2005, vol. 282, pp. 165–72.

    Article  Google Scholar 

  31. Yimai Liang, Na Guo, Linlin Li, Ruiqing Li, Guijuan Ji, and   Shucai Gan: New J. Chem., 2016, vol. 40, pp. 1587-94.

    Article  Google Scholar 

  32. Liming Song, Yu Li, Shouchun Li, Li Liu, Lianyuan Wang, Xuexin Guo, Hongwei Lian: J Mater Sci: Mater Electron., 2017, vol. 28, pp. 652–56.

    Google Scholar 

  33. Odoom Wubah T, Osei WB, Chen X, Sun D, Huang J, Li Q: J. Chem. Technol. Biotechnol., 2015, vol. 91, pp. 1493–504.

    Article  Google Scholar 

  34. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: Nat. Methods., 2012, vol. 9, pp. 671–75, PMID 22930834. http://www.nature.com/nmeth/journal/v9/n7/full/nmeth.2089.html.

  35. Schindelin J, Rueden CT, Hiner MC, Eliceiri KW: Molecular Reproduction and Development, 2015, 82:518-29.

    Article  Google Scholar 

  36. R. T. Downs, K. L. Bartelmehs, G. V. Gibbs, M. B. Boisen: American Mineralogist, :1993, vol. 78, pp. 1104-07.

    Google Scholar 

  37. N. Van Quy, V. A. Minh, N. Van Luan, V. N. Hung, and N. Van Hieu, Sensor. Actuat. B-Chem., 2011, vol. 153, pp. 188-93.

    Article  Google Scholar 

  38. Ridha NJ, Jumali MH, Umar AA, Alosfur F: Int. J. Electrochem. Sci., 2013, vol. 8, pp. 4583-94.

    Google Scholar 

  39. O. Lupan, L. Chow, G.Y. Chai, B. Roldan, A. Naitabdi, A. Schulte, and H. Heinrich: Mater. Sci. Eng. B, 2007, vol. 145, pp. 57-66.

    Article  Google Scholar 

  40. M. Asadian: J. Cryst. Process Technol., 2013, vol. 3, pp. 75-80.

    Article  Google Scholar 

  41. J.J. Hassan, M.A. Mahdi, A. Ramizy, H.A. Hassan, and Z. Hassan, Superlattices Microstruct., 2013, vol. 53, pp. 31-8.

    Article  Google Scholar 

  42. P. X. Gao and Z. L. Wang: J. Phys. Chem. B., 2004, vol. 108, pp. 7534-37.

    Article  Google Scholar 

  43. Palumbo M, Lutz T, Giusca CE, Shiozawa H, Stolojan V, Cox DC, Wilson RM, Henley SJ, Silva SR: Cryst. Growth Des., 2009, vol. 9, pp. 3432-3437.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadia J. Ikhmayies.

Additional information

Manuscript submitted December 9, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikhmayies, S.J. Formation of Three-Dimensional ZnO Microflowers from Self-Assembled ZnO Microdiscs. Metall Mater Trans A 48, 3625–3629 (2017). https://doi.org/10.1007/s11661-017-4150-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4150-6

Navigation