Skip to main content

Advertisement

Log in

Structural Stability of the Metastable β-[(Mo0.5Sn0.5)-(Ti13Zr1)]Nb1 Alloy with Low Young’s Modulus at Different States

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

β-Ti alloys with low Young’s modulus are always formed at the lower critical limit of β stabilization, where the β structure is prone to be destabilized. This present work aims at studying the structural stability of β-Ti alloy [(Mo0.5Sn0.5)-(Ti13Zr1)]Nb1 with low Young’s modulus (E) at different states of suction-cast (SC) and solution-treated (ST), and the deformation mechanisms of this alloy are also discussed. The solution treatment eliminates the composition heterogeneity of the SC alloy, and no second phases are precipitated from the β matrix, as a result of a further decrease of E from 48 GPa (SC) to 43 GPa (ST). After tension deformation, the stress-induced {112}\( \langle 111\rangle \) β twinning is dominant in the SC alloy, while the stress-induced phase transformation of βα″ plays a decisive role in the ST alloy, which results from the different structural stabilities of β matrix at different states. The minor second-phase precipitation renders the matrix with a slightly higher β stability of the SC alloy than that of the ST one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Abdel-Hady, K. Hinoshita, and M. Morinaga: Scripta Mater., 2006, vol. 55, pp. 477–80.

    Article  Google Scholar 

  2. M. Nakai, M. Niinomi, X. Zhao, and X. Zhao: Mater. Lett., 2011, vol. 65, pp. 688–90.

    Article  Google Scholar 

  3. T. Saito, T. Furuta, J.-H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, and Y. Seno: Science, 2003, vol. 300, pp. 464–67.

    Article  Google Scholar 

  4. M. Niinomi: Mater. Sci. Eng. A, 1998, vol. 243, pp. 231–36.

    Article  Google Scholar 

  5. M. Long and H. Rack: Biomaterials, 1998, vol. 19, pp. 1621–39.

    Article  Google Scholar 

  6. Y. Hao, S. Li, S. Sun, C. Zheng, and R. Yang: Acta Biomater., 2007, vol. 3, pp. 277–86.

    Article  Google Scholar 

  7. K.K. Wang, L.J. Gustavson, and J.H. Dumbleton: Medical Applications of Titanium and Its Alloys: The Material and Biological Issues, ASTM International, West Conshohocken, PA, 1996.

    Google Scholar 

  8. R. Davis, H. Flower, and D. West: J. Mater. Sci., 1979, vol. 14, pp. 712–22.

    Article  Google Scholar 

  9. Y.L. Hao, R. Yang, M. Niinomi, D. Kuroda, Y.L. Zhou, K. Fukunaga, and A. Suzuki: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3137–44.

    Article  Google Scholar 

  10. Y. Lee and G. Welsch: Mater. Sci. Eng. A, 1990, vol. 128, pp. 77–89.

    Article  Google Scholar 

  11. B. Hickman: J. Mater. Sci., 1969, vol. 4, pp. 554–63.

    Article  Google Scholar 

  12. W. Ho: J. Med. Biol. Eng., 2008, vol. 28, pp. 47–51.

    Google Scholar 

  13. Z. Fan and A. Miodownik: J. Mater. Sci., 1994, vol. 29, pp. 6403–12.

    Article  Google Scholar 

  14. S. Hanada and O. Izumi: Metall. Trans. A, 1987, vol. 18A, pp. 265–71.

    Article  Google Scholar 

  15. R. Talling, R. Dashwood, M. Jackson, and D. Dye: Acta Mater., 2009, vol. 57, pp. 1188–98.

    Article  Google Scholar 

  16. N. Sakaguchi, M. Niinomi, T. Akahori, J. Takeda, and H. Toda: Mater. Sci. Eng. C, 2005, vol. 25, pp. 370–76.

    Article  Google Scholar 

  17. N. Sakaguch, M. Niinomi, and T. Akahori: Mater. Trans., 2004, vol. 45, pp. 1113–19.

    Article  Google Scholar 

  18. M. Ahmed, D. Wexler, G. Casillas, O.M. Ivasishin, and E.V. Pereloma: Acta Mater., 2015, vol. 84, pp. 124–35.

    Article  Google Scholar 

  19. T. Grosdidier and M.-J. Philippe: Mater. Sci. Eng. A, 2000, vol. 291, pp. 218–23.

    Article  Google Scholar 

  20. D. Banerjee and J.C. Williams: Acta Mater., 2013, vol. 61, pp. 844–79.

    Article  Google Scholar 

  21. C. Brozek, F. Sun, P. Vermaut, Y. Millet, A. Lenain, D. Embury, P. Jacques, and F. Prima: Scripta Mater., 2016, vol. 114, pp. 60–64.

    Article  Google Scholar 

  22. S. Kuramoto, T. Furuta, J. Hwang, K. Nishino, and T. Saito: Mater. Sci. Eng. A, 2006, vol. 442, pp. 454–57.

    Article  Google Scholar 

  23. Q. Li, M. Niinomi, M. Nakai, Z. Cui, S. Zhu, and X. Yang: Mater. Sci. Eng. A, 2012, vol. 536, pp. 197–206.

    Article  Google Scholar 

  24. M. Hida, E. Sukedai, C. Henmi, K. Sakaue, and H. Terauchi: Acta Metall., 1982, vol. 30, pp. 1471–79.

    Article  Google Scholar 

  25. Y. Yang, G. Li, G. Cheng, H. Wang, M. Zhang, F. Xu, and K. Yang: Scripta Mater., 2008, vol. 58, pp. 9–12.

    Article  Google Scholar 

  26. F. Sun, J. Zhang, M. Marteleur, T. Gloriant, P. Vermaut, D. Laillé, P. Castany, C. Curfs, P. Jacques, and F. Prima: Acta Mater., 2013, vol. 61, pp. 6406–17.

    Article  Google Scholar 

  27. H. Matsumoto, S. Watanabe, and S. Hanada: Metall. Mater. Trans. A, 2005, vol. 46A, pp. 1070–78.

    Google Scholar 

  28. S. Hanada, N. Masahashi, and T.K. Jung: Mater. Sci. Eng. A, 2013, vol. 588, pp. 403–10.

    Article  Google Scholar 

  29. R.P. Kolli, W.J. Joost, and S. Ankem: JOM, 2015, vol. 67, pp. 1273–80.

    Article  Google Scholar 

  30. Q. Wang, C. Ji, Y. Wang, J. Qiang, and C. Dong: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1872–79.

    Article  Google Scholar 

  31. C. Pang, B. Jiang, Y. Shi, Q. Wang, and C. Dong: J. Alloys Compd., 2015, vol. 652, pp. 63–69.

    Article  Google Scholar 

  32. A. Takeuchi and A. Inoue: Mater. Trans., 2005, vol. 46, pp. 2817–29.

    Article  Google Scholar 

  33. Q. Wang, C. Dong, and P.K. Liaw: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 3440–47.

    Article  Google Scholar 

  34. B.B. Jiang, Q. Wang, D.H. Wen, F. Xu, G.Q. Chen, C. Dong, L.X. Sun, and P K. Liaw: Mater. Sci. Eng. A, 2017, vol. 687, pp. 1–7.

    Article  Google Scholar 

  35. S. Li, T. Cui, Y. Hao, and R. Yang: Acta Biomater., 2008, vol. 4, pp. 305–17.

    Article  Google Scholar 

  36. D. Ping, Y. Mitarai, and F. Yin: Scripta Mater., 2005, vol. 52, pp. 1287–91.

    Article  Google Scholar 

  37. Y. Hao, S. Li, S. Sun, and R. Yang: Mater. Sci. Eng. A, 2006, vol. 441, pp. 112–18.

    Article  Google Scholar 

  38. W.Q. Song, S. Sun, S. Zhu, G. Wang, J. Wang, and M.S. Dargusch: Mater. Des., 2012, vol. 34, pp. 739–45.

    Article  Google Scholar 

  39. Q. Wang, Q. Li, X. Li, R. Zhang, X. Gao, C. Dong, and P.K. Liaw: Metall. Mater. Trans. A, 2005, vol. 46A, pp. 3924–31.

    Google Scholar 

  40. P. Laheurte, A. Eberhardt, and M.-J. Philippe: Mater. Sci. Eng. A, 2005, vol. 396, pp. 223–30.

    Article  Google Scholar 

  41. D.L. Moffat and D.C. Larbalestier: Metall. Trans. A, 1988, vol. 19A, pp. 1677–86.

    Article  Google Scholar 

  42. T. Ahmed and H.J. Rack: Mater. Sci. Eng. A, 1998, vol. 243, pp. 206–11

    Article  Google Scholar 

  43. T. Li, D. Kent, G. Sha, L.T. Stephenson, A.V. Ceguerra, S.P. Ringer, M.S. Dargusch, and J.M. Cairney: Acta Mater., 2016, vol. 106, pp. 353–66.

    Article  Google Scholar 

  44. A. Devaraj, S. Nag, R. Srinivasan, R.E.A. Williams, S. Banerjee, R. Banerjee, and H.L. Fraser: Acta Mater., 2012, vol. 60, pp. 596–609.

    Article  Google Scholar 

  45. S. Guo, Q. Meng, X. Zhao, Q. Wei, and H. Xu: Sci. Rep., 2014. doi:10.1038/srep14688.

    Google Scholar 

  46. F. Sun, J. Zhang, M. Marteleur, C. Brozek, E. Rauch, M. Veron, P. Vermaut, P. Jacques, and F. Prima: Scripta Mater., 2015, vol. 94, pp. 17–20.

    Article  Google Scholar 

  47. Y. Yang, S. Wu, G. Li, Y. Li, Y. Lu, K. Yang, and P. Ge: Acta Mater., 2010, vol. 58, pp. 2778–87.

    Article  Google Scholar 

  48. M. Besse, P. Castany, and T. Gloriant: Acta Mater., 2011, vol. 59, pp. 5982–88.

    Article  Google Scholar 

  49. Y. Yang, G. Li, H. Wang, S. Wu, L. Zhang, Y. Li, and K. Yang: Scripta Mater., 2012, vol. 66, pp. 211–14.

    Article  Google Scholar 

  50. S. Guo, Q. Meng, X. Cheng, and X. Zhao: J. Mech. Behav. Biomed. Mater., 2014, vol. 38, pp. 26–32.

    Article  Google Scholar 

  51. T. Furuta, S. Kuramoto, J. Hwang, K. Nishino, and T. Saito: Mater. Trans., 2005, vol. 46, pp. 3001–07.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51171035), the International Thermonuclear Experimental Reactor (ITER) Program of China (Grant No. 2015GB121004), the International Science and Technology Cooperation Program of China (Grant No. 2015DFR60370), the Natural Science Foundation of Liaoning Province of China (Grant No. 2015020202), the Foundation of Guangxi Key Laboratory of Information Materials (Grant No. 161002-K), the Fundamental Research Funds for the Central Universities (Grant No. DUT16ZD212), and the Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Nonferrous Metal and Featured Materials (Grant No. GXKFJ16-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Wang.

Additional information

Manuscript submitted January 24, 2017.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, B., Wang, Q., Li, X. et al. Structural Stability of the Metastable β-[(Mo0.5Sn0.5)-(Ti13Zr1)]Nb1 Alloy with Low Young’s Modulus at Different States. Metall Mater Trans A 48, 3912–3919 (2017). https://doi.org/10.1007/s11661-017-4148-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4148-0

Navigation