Skip to main content
Log in

A Thermodynamic Framework Bridging the Composition and Temperature Dependence of Bulk Modulus With Enthalpy of Mixing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The intrinsic thermodynamic links that exist between thermochemical and thermophysical quantities, especially their temperature, pressure, and composition dependence, have seldom been analyzed in sufficient detail in literature. In this connection, an attempt is made to establish a thermodynamic bridge, relating Δo H mix, the standard enthalpy of mixing with Δo B T , the change in isothermal bulk modulus as a result of alloying and its composition and temperature dependence. In essence, by adopting the standard regular and subregular solution approximations to the composition dependence of mixing enthalpy; and furthermore, incorporating separately the configurational (Δo S conf) and vibrational (Δo S Vib) entropy contributions to mixing Gibbs energy change (Δo G mix), simple models have been derived for the composition and temperature variations of excess bulk modulus ΔB T . In particular, a regular or subregular solution analog of the composition variation of ΔB T is shown to be possible if Δo H mix could be described likewise. The vibrational entropy contribution to ΔB T is found to be important only when the change in Grüneisen parameter during alloying turns to be significant. The practical utility of the theoretical framework developed in this study has been demonstrated by applying it to disordered fcc Cu1−x Ni x alloys, wherein it is shown that Δo H mix and Δo B T are linearly correlated, as predicted by the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G. Grimvall: Thermophysical Properties of Materials, 2nd ed., North-Holland, Amsterdam, 1999, pp. 1–424.

    Book  Google Scholar 

  2. A. Migliori, J.P. Baiardo, and T.W. Darling: Los Alamos Sci., 2000, no. 26, pp. 208–25.

  3. H. Ledbetter: Materials at Low Temperatures, Amer. Soc. Metals, Materials Park, OH, 1983, pp. 1–45.

    Google Scholar 

  4. H. Ledbetter: Mater. Sci. Eng. A, 2006, vol. 442, pp. 31–34.

    Article  Google Scholar 

  5. O.L. Anderson: Equations of State for Solids in Geophysics and Ceramic Science, Oxford University Press, New York, NY, 1995, pp. 1–383.

    Google Scholar 

  6. P.E.A. Turchi, I.A. Abrikosov, B. Burton, S.G. Fries, G. Grimvall, L. Kaufman, P. Korzhavy, V.R. Manga, M. Ohno, A. Pisch, A. Scott, and W. Zhang: Calphad, 2007, vol. 31, pp. 4–27.

    Article  Google Scholar 

  7. Z.-K. Liu, and Y. Wang: Computational Thermodynamics of Materials, Cambridge University Press, New York, NY, 2016, pp. 1–251.

    Book  Google Scholar 

  8. Y. Wang, J.J. Wang, H. Zhang, V.R. Manga, S.L. Shang, L.-Q. Chen, and Z.-K. Liu: J. Phys.: Condensed Matter, 2010, vol. 22, p. 225404.

  9. A. Migliori, J.L. Sarrao, W.M. Visscher, T.M. Bell, M. Lei, Z. Fisk, and R.G. Leisure: Physica B, 1993, vol. 183, pp. 1–24.

    Article  Google Scholar 

  10. S. Speziale, H. Marquardt, and T.S. Duffy: Rev. Miner. Geosci., 2014, vol. 78, pp. 543–603.

    Article  Google Scholar 

  11. G. Roebben, B. Bollen, A. Brebels, J. Van Humbeeck, and O. Van der Biest: Rev. Sci. Instrum., 1997, vol. 68, pp. 4511–15.

    Article  Google Scholar 

  12. 12. E.P. Papadakis: J. Acoust. Soc. Amer., 1967, vol. 42, pp. 1045–51.

    Article  Google Scholar 

  13. G. Simmons and H. Wang: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, MIT Press, Cambridge, MA, 1971, pp. 1–370.

    Google Scholar 

  14. H. Wawra: Zeit. Fur Metallkunde, 1978, vol. 69, pp. 518–23.

    Google Scholar 

  15. J.D. Bass: Mineral Physics and Crystallography: A Handbook of Physical Constants, vol. 2, T.J. Ahrens, eds., AGU, Washington, DC, 1995, pp. 45–63.

  16. C.B.P. Finn: Thermal Physics, 2nd ed., Chapman Hall, London, U.K., 1993, pp. 1–272.

    Google Scholar 

  17. S. Stolen, and T. Grande: Chemical Thermodynamics of Materials: Macroscopic and Microscopic Aspects, Wiley, Chichester, U.K., 2003, pp. 1–408.

    Book  Google Scholar 

  18. N. Saunders, and A.P. Miodownik: CALPHAD: A Comprehensive Guide, Pergamon-Elsevier, Oxford, U.K., 1998, pp. 1–478.

    Google Scholar 

  19. Z.-K. Liu, H. Zhang, S. Ganeshan, Y. Wang, and S. Mathaudhu: Scripta Mater., 2010, vol. 63, pp. 686–91.

    Article  Google Scholar 

  20. X. Wang, L.B. Liu, M.F. Wang, X. Shi, G.X. Huang, and L.G. Zhang: Calphad, 2015, vol. 48, pp. 89–94.

    Article  Google Scholar 

  21. A.F. Guillermet, and G. Grimvall: Phys. Rev. B, 1991, vol. 44, pp. 4331–40.

    Article  Google Scholar 

  22. O. Eriksson, J.M. Wills, and D. Wallace: Phys. Rev. B, 1992, vol. 46, pp. 5221–7.

    Article  Google Scholar 

  23. V.S. Urusov, and I.F. Kravchuk: Crystal Res. Technol., 1983, vol. 18, pp. 629–36.

    Article  Google Scholar 

  24. D.C. Wallace: Thermodynamics of Crystals, Dover Pub., Mineola, NY, 1972, pp. 1–477.

    Google Scholar 

  25. C.S. Hartley: Acta Mater., 2003, vol. 51, pp. 1373–91.

    Article  Google Scholar 

  26. B. Golding, S.C. Moss, and B.L. Averbach: Phys. Rev., 1967, vol. 158, pp. 637–46.

    Article  Google Scholar 

  27. Y. Ikeda: Mater. Trans. JIM, 1997, vol. 38, pp. 761–70.

    Article  Google Scholar 

  28. A.K. Giri: Mater. Lett., 1993, vol. 17, pp. 353–56.

    Article  Google Scholar 

  29. R. Grover, I.C. Getting, and G.C. Kennedy: Phys. Rev. B, 1973, vol. 7, pp. 567–71.

    Article  Google Scholar 

  30. S. Raju, K. Sivasubramanian, and E. Mohandas: Solid St. Commun., 2002, vol. 124, pp. 151–56.

    Article  Google Scholar 

  31. M.H.G. Jacobs, and H.A.J. Oonk: Phys. Chem. Chem. Phys., 2000, vol. 2, pp. 2641–46.

    Article  Google Scholar 

  32. D.L. Anderson: Theory of the Earth. Blackwell Scientific Publications, Boston, MA, 1989, pp. 79–102.

    Google Scholar 

  33. V.N. Zharkov: Phys. Earth Planet. Interiors, 1998, vol. 109, pp. 79–89.

    Article  Google Scholar 

  34. S. Raju, and A.K. Rai: J. Nucl. Mater., 2010, vol. 408, pp. 40–44.

    Article  Google Scholar 

  35. S. Raju, K. Sivasubramanian, and E. Mohandas: Mater. Lett., 2003, vol. 57, pp. 3793–3801.

    Article  Google Scholar 

  36. S. Raju, K. Sivasubramanian, and E. Mohandas: Phys. Chem. Chem. Phys., 2001, vol. 3, pp. 1391–93.

    Article  Google Scholar 

  37. Y.P. Varshni: Phys. Rev. B, 1970, vol. 2, pp. 3952–55.

    Article  Google Scholar 

  38. H. Ledbetter: Phys. Stat. Solidi B, 1994, vol. 181, pp. 81–85.

    Article  Google Scholar 

  39. J. Wachtman, W. Tefft, and D. Lamm: Phys. Rev., 1961, vol. 122, pp. 1754–59.

    Article  Google Scholar 

  40. O.L. Anderson: Phys. Rev., 1966, vol. 144, pp. 553–57.

    Article  Google Scholar 

  41. T. Hammerschmidt, I.A. Abrikosov, D. Alfe, S.G. Fries, L. Hoglund, M.H.G. Jacobs, J. Koβmann, X.G. Lu, and G. Paul: Phys. Stat. Solidi B, 2014, vol. 251, pp. 81–96.

  42. B. Hallstedt, N. Dupin, M. Hillert, L. Höglund, H.L. Lukas, J.C. Schuster, and N. Solak: Calphad, 2007, vol. 31, pp. 28–37.

    Article  Google Scholar 

  43. E. Brosh, R.Z. Shneck, and G. Makov: J. Phys. Chem. Solids, 2008, vol. 69, pp. 1912–22.

    Article  Google Scholar 

  44. D. Su, Y.-L. He, J.-Q. Liu, and X.-G. Lu: Proceedings of the Int. Conf. on Information Science Machinery, Materials and Energy (ICISMME 2015), Atlantis Press, The Netherlands, 2015, pp. 1840–50.

  45. M.A. Turchanin, P.G. Agraval, and A.R. Abdulov: Powder Metall. Metall. Ceram., 2007, vol. 46, pp. 467–77.

    Article  Google Scholar 

  46. S. Mey: Calphad, 1992, vol. 16, pp. 255–60.

    Article  Google Scholar 

  47. S. Srikanth, and K.T. Jacob: Mater. Sci. Technol., 1989, vol. 5, pp. 427–34.

    Article  Google Scholar 

  48. T. Hüpf, C. Cagran, E. Kaschnitz, and G. Pottlacher: Int. J. Thermophys., 2010, vol. 31, pp. 966–74.

    Article  Google Scholar 

  49. J.W. Loram, and Z. Chen: J. Phys.: F, Metall. Phys., 1983, vol. 13, pp. 1519–37.

  50. R.J. Oriani and U.K. Murphy: Acta Metall., 1960, vol. 8, pp. 23–25.

    Article  Google Scholar 

  51. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley: Selected Values of the Thermodynamic Properties of Binary Alloys, American Society for Metals, Materials Park, OH, 1973, pp. 766–72.

    Google Scholar 

  52. B. Onat, and S. Durukanoglu: Eur. Phys. J. B, 2014, vol. 87, p. 264–74.

    Article  Google Scholar 

  53. P. Nash: Phase Diagrams of Binary Nickel Alloys, ASM International, Materials Park, OH, 1991, pp. 85–95.

    Google Scholar 

  54. S.G. Epstein and O.N. Carlson: Acta Metall., 1965, vol. 13, pp. 487–91.

    Article  Google Scholar 

  55. H.M. Ledbetter: Cryogenics, 1982, vol. 22, pp. 653–56.

    Article  Google Scholar 

  56. W.B. Pearson: A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, New York, NY, 1958, pp. 592–593.

    Google Scholar 

  57. G.B. Mitra, and T. Chattopadhyay: Acta Cryst. A, 1972, vol. 28, pp. 179–83.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the generous support and encouragement received during the course of this research from Dr. A.K. Bhaduri, Director, IGCAR, and Dr. G. Amarendra, Director, MMG/MSG, IGCAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramanian Raju.

Additional information

Manuscript submitted October 31, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raju, S., Saibaba, S. A Thermodynamic Framework Bridging the Composition and Temperature Dependence of Bulk Modulus With Enthalpy of Mixing. Metall Mater Trans A 48, 3927–3940 (2017). https://doi.org/10.1007/s11661-017-4125-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4125-7

Navigation