Relationships Between Smelter Grade Alumina Characteristics and Strength Determined by Nanoindentation and Ultrasound-Mediated Particle Breakage

Abstract

The mechanical strength of smelter grade alumina (SGA) is of considerable practical significance for the aluminum reduction process. Attrition of alumina during transportation and handling generates an increased level of fines. This results in generation of dust, poor flow properties, and silo segregation that interfere with alumina feeding systems. These lead to process instabilities which in turn result in current efficiency losses that are costly. Here we are concerned with developing a fundamental understanding of SGA strength in terms of its microstructure. Nanoindentation and ultrasound-mediated particle breakage tests have been conducted to study the strength. Strength of SGA samples both industry calcined and laboratory prepared, decrease with increasing α-alumina (corundum) content contrary to expectation. The reducing strength of alumina with increasing degree of calcination is attributed to the development of a macroporous and abrasion-prone microstructure resulting from the ‘pseudomorphic’ transformation of precursor gibbsite during the calcination process.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    World Aluminium: http://www.world-aluminium.org/statistics/alumina-production/#data, (2016). Accessed 10 October 2016.

  2. 2.

    F. Yen, P. Cheng, H. Huang, T. Lin, Journal of American Ceramic Society, 2009, vol. 92, pp. 2089-2092.

    Article  Google Scholar 

  3. 3.

    J. Metson, P. Lavoie, L. Perander, R. Etzion, Chemistry in New Zealand, 2010, vol. 74, pp. 96-100.

    Google Scholar 

  4. 4.

    K. Wefers, C. Misra, Oxides and Hydroxides of Aluminium, Alcoa Laboratories, New York, 1987.

    Google Scholar 

  5. 5.

    B. Whittington, D. Ilievski, Chemical Engineering Journal, 2004, vol. 98, pp. 89-97.

    Article  Google Scholar 

  6. 6.

    L.M. Perander, Evolution of Nano and Microstructure During the Calcination of Bayer Gibbsite. PhD Thesis, The University of Auckland, 2010.

  7. 7.

    V.J. Ingram-Jones, R.C.T. Slade, T.W. Davies, J.C. Southern, S. Salvador, Journal of Materials Chemistry, 1996, vol. 6, pp. 73-79.

    Article  Google Scholar 

  8. 8.

    K. Yamada, T. Harato, S. Hamano, K. Horinouchi, Light Metals, TMS, Warrendale, 1984.

    Google Scholar 

  9. 9.

    M.F. Peintinger, M.J. Kratz, T. Bredow, Journal of Materials Chemistry A, 2014, vol.2, pp. 13143-13158.

    Article  Google Scholar 

  10. 10.

    L.M. Perander, J.B. Metson, C. Klett, Light Metals, TMS, San Diego, 2011. pp. 151-154.

    Google Scholar 

  11. 11.

    S. Chandrashekar, D. Jackson, J. Kisler: Proc. of the 7th International Alumina Quality Workshop, 2005.

  12. 12.

    W.L. Forsythe, W.R. Hertwig, Industrial and Engineering Chemistry, 1949, vol. 41, pp. 1200-1206.

    Article  Google Scholar 

  13. 13.

    L.T. Kristiansen, A.K. Prytz, E. Tveten: Proc. of the 9th International Alumina Quality Workshop, 2012.

  14. 14.

    J.V. Sang, Essential Readings in Light Metals, Wiley, Hoboken, 2013, pp. 740-746.

    Google Scholar 

  15. 15.

    S. Wind, C. Jensen-Holm, B.E. Raahauge, Development of Particle Breakdown and Alumina Strength During Calcination. In: D. Donaldson, B. Raahauge (eds) Essential Readings in Light Metals, Wiley, Hoboken, 2013, pp. 757-764.

    Google Scholar 

  16. 16.

    A. Saatci, H.-W. Schmidt, W. Stockhausen, M. Stroder, P. Strum, Light Metals, TMS, 2004, pp. 81–86.

  17. 17.

    [17] P. Zhang, S.X. Li, Z.F. Zhang, Materials Science and Engineering A, 2011, vol. 529, pp. 62-73.

    Article  Google Scholar 

  18. 18.

    G.I. Roach, J.B. Cornell, B.J. Griffin, Light Metals, TMS, Warrendale, 1998, pp. 153-158.

    Google Scholar 

  19. 19.

    S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc., 1938, vol. 60, pp. 309-319.

    Article  Google Scholar 

  20. 20.

    E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc., 1953, vol. 73, pp. 373-380.

    Article  Google Scholar 

  21. 21.

    P. Kippax, Paint and Coatings Industry Magazine, (2005).

  22. 22.

    M.E. Dickinson, J.P. Schirer, Materials Today, 2009, vol.12, pp. 46-50.

    Article  Google Scholar 

  23. 23.

    [23] M.L. Oyen, R.F. Cook, Journal of Mechanical Behavior of Biomedical Materials, 2009, vol.2, pp. 396-407.

    Article  Google Scholar 

  24. 24.

    W.C. Oliver, G.M. Pharr, Journal of Materials Research, 1992, vol.7, pp.1564-1583.

    Article  Google Scholar 

  25. 25.

    A.C. Fischer-Cripps, Nanoindentation, Springer, New York, 2004.

    Google Scholar 

  26. 26.

    W.C. Oliver, G.M. Pharr, Journal of Materials Research, 2004, vol.19, pp. 3-20.

    Article  Google Scholar 

  27. 27.

    J.E. Bradby, S.O. Kucheyev, J.S. Williams, J. Wong-Leung, Applied Physics Letters, 2002, vol. 80, pp. 383-385.

    Article  Google Scholar 

  28. 28.

    A. Dey, A.K. Mukhopadhyay, Nanoindentation of Brittle Solids, CRC Press Taylor & Francis Group, Baton Raton, 2014.

    Google Scholar 

  29. 29.

    A. Mikowski, P. Soares, F. Wypych, C.M. Lepienski, American Mineralogist, 2008, vol. 93, pp. 844-852.

    Article  Google Scholar 

  30. 30.

    C. Fizanne-Michel, M. Cornen, P. Castany, I. Péron, T. Gloriant, Materials Science and Engineering A, 2014 vol. 613, pp. 159-162.

    Article  Google Scholar 

  31. 31.

    NanoScience Instruments: http://www.nanoscience.com/technology/mechanical-testing-technology/mechanical-properties/elastic-modulus-and-hardness/, (2016). Accessed 17 October 2016.

  32. 32.

    [32] H.N. Pham, L. Nowichi, J. Xu, A.K. Datye, Industrial and Engineering Chemistry Research, 2003, vol. 42, pp. 4001-4008.

    Article  Google Scholar 

  33. 33.

    T.E. Buchheit, T.J. Vogler, Mechanics of Materials, 2010, vol 42, pp. 599-614.

    Article  Google Scholar 

  34. 34.

    J. Echigoya, T. Hyakubu, Z.T. Liu, K. Sasaki, H. Sutu, Surface and Coatings Technology, 1994, vol. 67, pp.111-117.

    Article  Google Scholar 

  35. 35.

    [35] A. Krell, S. Schadlich, Materials Science and Engineering A, 2001, vol. 307, pp. 172-181.

    Article  Google Scholar 

  36. 36.

    L.M. Perander, M.A. Stam, M.M. Hyland, J.B. Metson, Light Metals, TMS, Warrendale, 2011, pp. 285- 290.

    Google Scholar 

Download references

Funding

The authors acknowledge the generous support of Outotec GmbH.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hasini Wijayaratne.

Additional information

Manuscript submitted December 18, 2016.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1565 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wijayaratne, H., McIntosh, G., Hyland, M. et al. Relationships Between Smelter Grade Alumina Characteristics and Strength Determined by Nanoindentation and Ultrasound-Mediated Particle Breakage. Metall Mater Trans A 48, 3046–3059 (2017). https://doi.org/10.1007/s11661-017-4080-3

Download citation

Keywords

  • Gibbsite
  • Environmental Scan Electron Microscopy
  • Particle Breakage
  • Transition Alumina
  • Particle Size Distribution Measurement