Advertisement

Metallurgical and Materials Transactions A

, Volume 48, Issue 6, pp 3046–3059 | Cite as

Relationships Between Smelter Grade Alumina Characteristics and Strength Determined by Nanoindentation and Ultrasound-Mediated Particle Breakage

  • Hasini WijayaratneEmail author
  • Grant McIntosh
  • Margaret Hyland
  • Linus Perander
  • James Metson
Article

Abstract

The mechanical strength of smelter grade alumina (SGA) is of considerable practical significance for the aluminum reduction process. Attrition of alumina during transportation and handling generates an increased level of fines. This results in generation of dust, poor flow properties, and silo segregation that interfere with alumina feeding systems. These lead to process instabilities which in turn result in current efficiency losses that are costly. Here we are concerned with developing a fundamental understanding of SGA strength in terms of its microstructure. Nanoindentation and ultrasound-mediated particle breakage tests have been conducted to study the strength. Strength of SGA samples both industry calcined and laboratory prepared, decrease with increasing α-alumina (corundum) content contrary to expectation. The reducing strength of alumina with increasing degree of calcination is attributed to the development of a macroporous and abrasion-prone microstructure resulting from the ‘pseudomorphic’ transformation of precursor gibbsite during the calcination process.

Keywords

Gibbsite Environmental Scan Electron Microscopy Particle Breakage Transition Alumina Particle Size Distribution Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Funding

The authors acknowledge the generous support of Outotec GmbH.

Supplementary material

11661_2017_4080_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1565 kb)

References

  1. 1.
    World Aluminium: http://www.world-aluminium.org/statistics/alumina-production/#data, (2016). Accessed 10 October 2016.
  2. 2.
    F. Yen, P. Cheng, H. Huang, T. Lin, Journal of American Ceramic Society, 2009, vol. 92, pp. 2089-2092.CrossRefGoogle Scholar
  3. 3.
    J. Metson, P. Lavoie, L. Perander, R. Etzion, Chemistry in New Zealand, 2010, vol. 74, pp. 96-100.Google Scholar
  4. 4.
    K. Wefers, C. Misra, Oxides and Hydroxides of Aluminium, Alcoa Laboratories, New York, 1987.Google Scholar
  5. 5.
    B. Whittington, D. Ilievski, Chemical Engineering Journal, 2004, vol. 98, pp. 89-97.CrossRefGoogle Scholar
  6. 6.
    L.M. Perander, Evolution of Nano and Microstructure During the Calcination of Bayer Gibbsite. PhD Thesis, The University of Auckland, 2010.Google Scholar
  7. 7.
    V.J. Ingram-Jones, R.C.T. Slade, T.W. Davies, J.C. Southern, S. Salvador, Journal of Materials Chemistry, 1996, vol. 6, pp. 73-79.CrossRefGoogle Scholar
  8. 8.
    K. Yamada, T. Harato, S. Hamano, K. Horinouchi, Light Metals, TMS, Warrendale, 1984.Google Scholar
  9. 9.
    M.F. Peintinger, M.J. Kratz, T. Bredow, Journal of Materials Chemistry A, 2014, vol.2, pp. 13143-13158.CrossRefGoogle Scholar
  10. 10.
    L.M. Perander, J.B. Metson, C. Klett, Light Metals, TMS, San Diego, 2011. pp. 151-154.Google Scholar
  11. 11.
    S. Chandrashekar, D. Jackson, J. Kisler: Proc. of the 7th International Alumina Quality Workshop, 2005.Google Scholar
  12. 12.
    W.L. Forsythe, W.R. Hertwig, Industrial and Engineering Chemistry, 1949, vol. 41, pp. 1200-1206.CrossRefGoogle Scholar
  13. 13.
    L.T. Kristiansen, A.K. Prytz, E. Tveten: Proc. of the 9th International Alumina Quality Workshop, 2012.Google Scholar
  14. 14.
    J.V. Sang, Essential Readings in Light Metals, Wiley, Hoboken, 2013, pp. 740-746.CrossRefGoogle Scholar
  15. 15.
    S. Wind, C. Jensen-Holm, B.E. Raahauge, Development of Particle Breakdown and Alumina Strength During Calcination. In: D. Donaldson, B. Raahauge (eds) Essential Readings in Light Metals, Wiley, Hoboken, 2013, pp. 757-764.CrossRefGoogle Scholar
  16. 16.
    A. Saatci, H.-W. Schmidt, W. Stockhausen, M. Stroder, P. Strum, Light Metals, TMS, 2004, pp. 81–86.Google Scholar
  17. 17.
    [17] P. Zhang, S.X. Li, Z.F. Zhang, Materials Science and Engineering A, 2011, vol. 529, pp. 62-73.CrossRefGoogle Scholar
  18. 18.
    G.I. Roach, J.B. Cornell, B.J. Griffin, Light Metals, TMS, Warrendale, 1998, pp. 153-158.Google Scholar
  19. 19.
    S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc., 1938, vol. 60, pp. 309-319.CrossRefGoogle Scholar
  20. 20.
    E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc., 1953, vol. 73, pp. 373-380.CrossRefGoogle Scholar
  21. 21.
    P. Kippax, Paint and Coatings Industry Magazine, (2005).Google Scholar
  22. 22.
    M.E. Dickinson, J.P. Schirer, Materials Today, 2009, vol.12, pp. 46-50.CrossRefGoogle Scholar
  23. 23.
    [23] M.L. Oyen, R.F. Cook, Journal of Mechanical Behavior of Biomedical Materials, 2009, vol.2, pp. 396-407.CrossRefGoogle Scholar
  24. 24.
    W.C. Oliver, G.M. Pharr, Journal of Materials Research, 1992, vol.7, pp.1564-1583.CrossRefGoogle Scholar
  25. 25.
    A.C. Fischer-Cripps, Nanoindentation, Springer, New York, 2004.CrossRefGoogle Scholar
  26. 26.
    W.C. Oliver, G.M. Pharr, Journal of Materials Research, 2004, vol.19, pp. 3-20.CrossRefGoogle Scholar
  27. 27.
    J.E. Bradby, S.O. Kucheyev, J.S. Williams, J. Wong-Leung, Applied Physics Letters, 2002, vol. 80, pp. 383-385.CrossRefGoogle Scholar
  28. 28.
    A. Dey, A.K. Mukhopadhyay, Nanoindentation of Brittle Solids, CRC Press Taylor & Francis Group, Baton Raton, 2014.CrossRefGoogle Scholar
  29. 29.
    A. Mikowski, P. Soares, F. Wypych, C.M. Lepienski, American Mineralogist, 2008, vol. 93, pp. 844-852.CrossRefGoogle Scholar
  30. 30.
    C. Fizanne-Michel, M. Cornen, P. Castany, I. Péron, T. Gloriant, Materials Science and Engineering A, 2014 vol. 613, pp. 159-162.CrossRefGoogle Scholar
  31. 31.
  32. 32.
    [32] H.N. Pham, L. Nowichi, J. Xu, A.K. Datye, Industrial and Engineering Chemistry Research, 2003, vol. 42, pp. 4001-4008.CrossRefGoogle Scholar
  33. 33.
    T.E. Buchheit, T.J. Vogler, Mechanics of Materials, 2010, vol 42, pp. 599-614.CrossRefGoogle Scholar
  34. 34.
    J. Echigoya, T. Hyakubu, Z.T. Liu, K. Sasaki, H. Sutu, Surface and Coatings Technology, 1994, vol. 67, pp.111-117.CrossRefGoogle Scholar
  35. 35.
    [35] A. Krell, S. Schadlich, Materials Science and Engineering A, 2001, vol. 307, pp. 172-181.CrossRefGoogle Scholar
  36. 36.
    L.M. Perander, M.A. Stam, M.M. Hyland, J.B. Metson, Light Metals, TMS, Warrendale, 2011, pp. 285- 290.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • Hasini Wijayaratne
    • 1
    Email author
  • Grant McIntosh
    • 1
  • Margaret Hyland
    • 1
  • Linus Perander
    • 2
  • James Metson
    • 1
  1. 1.Light Metals Research CentreThe University of AucklandAucklandNew Zealand
  2. 2.Outotec GmbHOberurselGermany

Personalised recommendations