Skip to main content
Log in

Stress Corrosion Cracking Behavior of X80 Pipeline Steel in Acid Soil Environment with SRB

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Self-designed experimental device was adopted to ensure the normal growth of sulphate-reducing bacteria (SRB) in sterile simulated Yingtan soil solution. Stress corrosion cracking (SCC) behavior of X80 pipeline steel in simulated acid soil environment was investigated by electrochemical impedance spectroscopy, slow strain rate test, and scanning electron microscope. Results show that the presence of SRB could promote stress corrosion cracking susceptibility. In a growth cycle, polarization resistance first presents a decrease and subsequently an increase, which is inversely proportional to the quantities of SRB. At 8 days of growth, SRB reach their largest quantity of 1.42 × 103 cells/g. The corrosion behavior is most serious at this time point, and the SCC mechanism is hydrogen embrittlement. In other SRB growth stages, the SCC mechanism of X80 steel is anodic dissolution. With the increasing SRB quantities, X80 steel is largely prone to SCC behavior, and the effect of hydrogen is considerably obvious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.Q.Wu, M.C.Yan, D.C.Zeng, J.Xu, C.K.Yu, C.Sun, W.Ke:Acta Metall. Sin., 2015,vol. 28, pp. 93-102.

    Article  Google Scholar 

  2. E. Hamzah, M. F. Hussain, Z. Ibrahim, A. Abdolahi: Arabian J. Sci.Eng., 2014, vol.39, pp. 6863-6870.

    Article  Google Scholar 

  3. F. M. AlAbbas, C. Williamson, S. M. Bhola, J. R. Spear, D. L. Olson, B. Mishra, A. E. Kakpovbia: J. Mater. Eng. Perform.,2013, vol.22, pp. 3517-3529.

    Article  Google Scholar 

  4. R. Javaherdashti: Appl. Microbiol. Biotechnol., 2011, vol. 91, pp.507–1517.

    Article  Google Scholar 

  5. K. Elmouaden, S. Jodeh, A. Chaouay, R. Oukhrib, R. Salghi, L. Bazzi, M. Hilali: J.Surf. Eng. Mater. Adv. Technol., 2016, vol. 6, pp. 36–46.

    Google Scholar 

  6. S.Q. Chen, P. Wang, D. Zhang: Mater. Corros., 2016, vol. 67, pp. 340–351.

    Article  Google Scholar 

  7. E. Miranda, M. Bethencourt, F.J. Botana, M.J. Cano, J.M. Sánchez-Amay, A. Corzo, J.G. de Lomas, M.L. Fardeau, B. Ollivier: Corros. Sci., 2006, vol. 48, pp. 2417-2132.

    Google Scholar 

  8. F.S.Li, M.Z.An, G.Z.Liu, D.X.Duan:Chin.J. Inorg.Chem.,2009, vol. 25, pp. 13-18.

    Google Scholar 

  9. T.Q.Wu, M.C. Yan, D.C. Zeng, J.Xu, C.Sun, C.K. Yu, W.Ke: J.Mater.Sci.Technol., 2015, vol. 31, pp. 413-422.

    Article  Google Scholar 

  10. G.H.Booth, A.K.Tiller: Corros. Sci., 1968, vol. 8, pp.583-600.

    Article  Google Scholar 

  11. S. S. Da, R. Basseguy, A. Bergel:J. Electroanal. Chem., 2004, vol. 561, pp. 93-102.

    Article  Google Scholar 

  12. S.S.Abedi, A. Abdolmaleki, N. Adibi: Eng. Fail. Anal., 2007, vol. 14, pp. 250-261.

    Article  Google Scholar 

  13. P.R. Javaherdashtia: J. Int. Biodett. Biodegrag, 2006, vol. 58, pp. 27-35.

    Article  Google Scholar 

  14. Z.Y.Liu, C.P.Wang, C.W.Du, X.G.Li:Acta Metall.Sin., 2011, vol. 47, pp. 1434-1439.

    Google Scholar 

  15. Y.H. Wu, T.M. Liu, S.X. Luo, C. Sun: Materialwiss. Werkstofftech., 2010, vol. 41, pp.142–146.

    Article  Google Scholar 

  16. F. Xie, M. Wu, W.J. Zhang: Stress-electrochemical corrosion test device: China, 201420712093.6[P]. 20150408.

  17. D. Wang, F Xie, M. Wu, D.X. Sun, Q.H. Zhao, L.S.Cheng:Mater.Mech. Eng.,2016,vol.40,pp.57-62.

    Google Scholar 

  18. S. Païssé, J.F. Ghiglione, F. Marty, B. Abbas, H Gueuné, J. M. S. Amaya, G. Muyzer, L. Quillet: Appl. Microbiol. Biotechnol., 2013, vol. 97, pp. 7493-7504.

    Article  Google Scholar 

  19. H. Q. Xian, L Z Guo: Laboratory experiments in microbiology, Higher education press, Beijing, 2010, pp.31-35.

    Google Scholar 

  20. F. Xie, M. Wu, X. Chen, D. Wang, Z.L. Hu, Y.F. Liu: J. Central S. Univ., 2013, vol. 44, pp. 424-430.

    Google Scholar 

  21. C.N.Cao:Principles of electrochemistry of corrosion, Chemical Industry Press,Beijing, 2008, pp.185-187.

    Google Scholar 

  22. Q. Jiang, Q. Miao, F. Tong, Y. Xu, B. L. Ren, Z. M. Liu, Z. J. Yao:Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 2713-22.

    Article  Google Scholar 

  23. X. Zhang, Y.J. Li, K. Zhang, C.X. Wang, H.W. Li, M.L. Ma, B.D. Li: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp.1226-1236.

    Article  Google Scholar 

  24. M.C. Yan, J. Xu, L.B. Yu, T.Q.Wu, C. Sun, W.Ke: Corros. Sci.2016, vol. 110, pp. 23-34.

    Article  Google Scholar 

  25. D. Wang, F Xie, M. Wu, X. Li, L.S. Cheng: Trans. Mater. Heat Treat., 2016, vol.37, pp.198-203.

    Google Scholar 

  26. G K Glass, A M Hassanein, N R Buenfeld:Corrosion, 1998, vol. 54, pp. 887-897.

    Article  Google Scholar 

  27. J.Xu, C.Sun, M.C.Yan, F.H. Wang: Mater. Chem. Phys., 2013, vol. 142, pp.692-700.

    Article  Google Scholar 

  28. H.C. Ma, Z.Y. Liu, C.W. Du, H.R. Wang, X.G. Li, D.W. Zhang, Z.Y. Cui: Corros. Sci., 2015, vol. 100, pp. 627-641.

    Article  Google Scholar 

  29. T.Q.Wu, J. Xu, C.Sun, M.C. Yan, C.K. Yu, K.Wei:Corros. Sci., 2014, vol. 88, pp. 291-305.

    Article  Google Scholar 

  30. F M Alabbas, C Williamson, S.M.Bhola, J.R. Spear, D. L. Olson, B. Mishra, A. E. Kakpovbia: Int. Biodeterior. Biodegrad., 2013, vol. 78, pp. 34-42.

    Article  Google Scholar 

  31. T.Q.Wu, J. Xu, M.C. Yan, C.Sun, C.K.Yu, K.Wei: Corros. Sci.,2014, vol. 83, pp. 38-47.

    Article  Google Scholar 

  32. J.H. Liu, X Ling, S. Li: J. Rare Earths, 2007, vol. 25, pp. 609-614.

    Article  Google Scholar 

  33. C.B. Zheng, G. Yi, Y.M.Gao, K.Zhang:Chin. J. Nonferrous Met., 2013, vol. 23, pp.2118-2124.

    Article  Google Scholar 

  34. D. Wang, F. Xie, M. Wu, X. Chen, Y. Fu, W.J. Zhang, L. Ge: J. Central S. Univ, 2014, vol. 45, pp. 2985-2992.

    Google Scholar 

  35. S.J.Kim, M.S.Han, S.K.Kim, S.K.Jang:Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 17-22.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (Grant Numbers 51604150 and 51574147) and Doctor Starup Foundation of Liaoning Province (Grant Number 201601324) and Talent Scientific Research Fund of LSHU(No. 2016XJJ-032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Xie.

Additional information

Manuscript submitted on October 23, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Xie, F., Wu, M. et al. Stress Corrosion Cracking Behavior of X80 Pipeline Steel in Acid Soil Environment with SRB. Metall Mater Trans A 48, 2999–3007 (2017). https://doi.org/10.1007/s11661-017-4068-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4068-z

Keywords

Navigation