Non-isothermal Characterization of the Precipitation Hardening of a Cu-11Ni-19Zn-1Sn Alloy


The precipitation hardening of a Cu-11Ni-19Zn-1Sn alloy has been studied by means of Differential Scanning Calorimetry (DSC), High-Resolution Transmission Electron Microscopy (HRTEM), and hardness measurements. The calorimetric curves, in the range of temperatures analyzed, show the presence of one exothermic reaction followed by an endothermic one. The exothermic DSC peak is due to the segregation of Cu2NiZn precipitates and it is associated to a noticeable improvement of the mechanical properties of the alloy. The endothermic effect is associated to the dissolution of the Cu2NiZn precipitates into the copper matrix for restoring the starting Cu-11Ni-19Zn-1Sn homogeneous solid solution. The reaction mechanisms of these processes have been proposed from the kinetic analysis of the exothermic and endothermic DSC signals. The results obtained point out that tin plays a decisive role on the precipitation hardening of the alloy, because age hardening is not observed in the case of a Cu-Ni-Zn ternary alloy of similar composition.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    R.H. Palma, A. Sepúlveda, R. Espinoza, A. Zúñiga, M.J. Diánez, J.M. Criado and M.J. Sayagués: Mater. Sci. Eng. A, 2004, vol. 384, pp. 262-269

    Article  Google Scholar 

  2. 2.

    J.R. Groza and J.C. Gibeling: Mater. Sci. Eng. A, 1993, vol. 171, pp. 115-125

    Article  Google Scholar 

  3. 3.

    N. Lebrun and P. Perrot: Non-ferreous metal systems,Part 3, Landolt-Börnstein-Group IV Physical Chemistry, vol. 11C3, Springer, Stuggart, Germany, 2007, pp. 338-354

    Google Scholar 

  4. 4.

    S. Nagarjuna, M. Srinivas and K.K. Sharma: Acta Mater., 2000, vol. 48, pp. 1807-1813

    Article  Google Scholar 

  5. 5.

    S. Nagarjuna, B. Gopalakrishna and M. Srinivas: Mater. Sci. Eng. A, 2006, vol. 429, pp. 169-172

    Article  Google Scholar 

  6. 6.

    X.Z. Zhou, Y.C. Su and J.M. Sun: J. Mater. Sci., 2010, vol. 45, pp.3080-3087

    Article  Google Scholar 

  7. 7.

    X.Z. Zhou and Y.C. Su: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5153-5156

    Article  Google Scholar 

  8. 8.

    X.P. Ding, H.Cui, J.X. Zhang, H.X. Li, M.X. Guo and Z. L. Min: Mater. Des., 2015, vol.65, pp. 1229-1235

    Article  Google Scholar 

  9. 9.

    X.Y. Liu, Q.L. Pan, S.X. Zhang, S.X. Liang, L.Y. Zheng, F. Gao and H.L. Xie: Mater. Des., 2014, vol. 58, pp. 247-251

    Article  Google Scholar 

  10. 10.

    C. Li, D.G. Lee, X.J. Mi, W.J. Ye, S.X, Hui and Y.T, Lee: Metall. Mater.Trans. A, 2016, vol. 47A, pp.2454-2461

    Article  Google Scholar 

  11. 11.

    G. Miyamoto, S. Suetsugu, K. Shimbo and T. Furuhara: Metall. Mater.Trans. A, 2015, vol. 46A, pp. 5011-5020

    Article  Google Scholar 

  12. 12.

    J.S. Pérez, R.R. Ambriz, F.F.C. López and D.J. Vigueras: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3412–22

  13. 13.

    S. Sackl, M. Zuber, H. Clemens and S. Priming: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3694-3702

    Article  Google Scholar 

  14. 14.

    M.J. Diánez, E. Donoso, J.M. Criado, M.J. Sayagués, G. Diaz and L. Olivares: Mater.Des., 2016, vol.92, pp. 184-188

    Article  Google Scholar 

  15. 15.

    T.D. Shen and C.C. Koch: Acta. Mater., 1996, vol. 44, pp. 753-761

    Article  Google Scholar 

  16. 16.

    E. Donoso, R. Espinoza, M.J. Diánez and J.M. Criado: Mater. Sci. Eng. A, 2012, vol. 556A, pp. 612–16

  17. 17.

    S. Sheibani, S. Heshmati-Manesh, A. Ataie, A. Caballero and J.M. Criado: J. Alloys Compnd., 2014, vol. 587, pp.670-676

    Article  Google Scholar 

  18. 18.

    T. Klassen,U. Herr and R.S. Averback: Acta Mater., 1997, vol.45, pp. 2921-2930

    Article  Google Scholar 

  19. 19.

    S. Sheibani, A. Ataie, S. Heshmati-Manesh, A. Caballero and J.M. Criado: Thermochim. Acta, 2011, vol. 526, pp.222-228

    Article  Google Scholar 

  20. 20.

    M.J Diánez, E. Donoso, M.J. Sayagués, A. Perejón, P.E. Sánchez-Jiménez, L.A. Pérez-Maqueda and J.M. Criado: J. Alloys Compnd., 2016, vol. 688, pp. 238-294

    Article  Google Scholar 

  21. 21.

    E. Donoso, A. Zúñiga, M.J. Diánez and J.M. Criado: J. Thermal Anal. Calorim., 2010, vol. 100, pp. 975-980

    Article  Google Scholar 

  22. 22.

    E. Donoso, G. Díaz and J.M. Criado: J. Thermal Anal. Calorim., 2008, vol. 91, pp.491-495

    Article  Google Scholar 

  23. 23.

    S. Esmaeili, X. Wang, D.j. Lloyd and W.J. Poole: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 751–63

  24. 24.

    H.E. Kissinger: Anal. Chem,1957, vol. 29, pp.1702-1706

    Article  Google Scholar 

  25. 25.

    J.M. Criado and A. Ortega: J. Non-Cryst. Solids, 1986, vol. 87, pp. 302-311

    Article  Google Scholar 

  26. 26.

    J.M. Criado and A. Ortega: Acta Metall., 1987, vol.35, pp. 1715-1721

    Article  Google Scholar 

  27. 27.

    D. Chen, X. Gao and D. Dollimore: Thermochim. Acta, 1993, vol. 215, pp. 109-117

    Article  Google Scholar 

  28. 28.

    S. Vyazovkin, A.K. Burhan, J.M. Criado, L.A, Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli: Thermochim. Acta, 2011, vol. 520, pp. 1–19

  29. 29.

    C.D. Doyle, Nature, 1966, vol. 20, pp. 290

    Google Scholar 

  30. 30.

    L.A. Pérez-Maqueda, P.E. Sánchez-Jiménez and J.M. Criado: Int. J. Chem. Kinet., 2005, vol. 37, pp. 658-666

    Article  Google Scholar 

  31. 31.

    J.W. Christian: The theory of transformations in metals and alloys, 3rd edition. Pergamon Press, London, U.K., 2002, pp. 529-552

    Google Scholar 

  32. 32.

    Z. Chvoj, J. Sestak, and A. Tritska: Kinetic Phase Diagrams. Non-equilibrium Phase Transitions, Elsevier, Amsterdam, The Netherland, 1991, p. 222

  33. 33.

    A.M. Brown and M.F. Ashby: Acta Metall.,1980, vol. 28, pp.1266-1271

    Article  Google Scholar 

  34. 34.

    A. Varchavsky and E. Donoso: J. Miner. Met., 1999, vol. 35B, pp. 255–76

Download references


The authors would like to acknowledge the Fondo Nacional de Desarrollo Científico y Tecnoloógico (FONDECYT) for financial support, Project No. 1140782. The access to specialized facilities and laboratories provided by the Instituto de Ciencias de Materiales de Sevilla, Spain and the Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile is also greatly appreciated.

Author information



Corresponding author

Correspondence to M. J. Diánez.

Additional information

Manuscript submitted September 26, 2016.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Donoso, E., Diánez, M.J., Criado, J.M. et al. Non-isothermal Characterization of the Precipitation Hardening of a Cu-11Ni-19Zn-1Sn Alloy. Metall Mater Trans A 48, 3090–3095 (2017).

Download citation


  • Differential Scanning Calorimetry
  • Quaternary Alloy
  • Kissinger Method
  • Differential Scanning Calorimetry Trace
  • Differential Scanning Calorimetry Peak