Skip to main content
Log in

Recovery Phenomenon During Annealing of an As-Rapidly Solidified Al Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

It has been well documented that recovery occurring in metals/alloys produced via solid-state quenching involves only annihilation of supersaturated vacancies. Interestingly, in the present study, we observed completely different mechanisms underlying recovery during annealing of an Al-Zn-Mg-Cu (7075 Al) alloy processed via liquid-state quenching, i.e., rapid solidification (specifically melt spinning herein). The as-melt-spun alloy consists of refined grains containing tangled dislocations inside the grains. Following annealing at 393 K (120 °C) for 24 hours, refined grain structure was still retained and grain sizes essentially remained unchanged, but subgrains separated by dense dislocation walls were generated at grain interiors, with a much lower density of dislocations at subgrain interiors than that in the as-melt-spun 7075 Al alloy and dislocation arrays inside some subgrains. The microstructural evolution suggests the absence of recrystallization and the occurrence of recovery primarily via the annihilation and rearrangement of dislocations and the formation of subgrains. Based on the stored energy in dislocations in, and the annealing temperature of, the as-melt-spun 7075 Al alloy, the recovery phenomenon was analyzed and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. A1

Similar content being viewed by others

References

  1. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D.Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219–74.

    Article  Google Scholar 

  2. D. Raabe: Recovery and recrystallization: phenomena, physics, models, and simulation, in: Physical Metallurgy, 5th ed., D.E. Laughlin and K. Hono, eds., The Book Depository US, London, UK, 2014.

    Google Scholar 

  3. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Boston, MA, 2004.

    Google Scholar 

  4. A.K. Sinha: Physical Metallurgy Handbook, McGraw-Hill Education, New York, 2002.

    Google Scholar 

  5. J. Wyrill: The Theory of Transformations in Metals and Alloys, Elsevier Science & Technolog, London, UK, 1965.

    Google Scholar 

  6. F. Prinz, A.S. Argon, and W.C. Moffatt: Acta Metall., 1982, vol. 30, pp. 821–30.

    Article  Google Scholar 

  7. A. Rueanngoen, M. Imai, K. Yoshida, and T. Yano: J. Nucl. Mater., 2013, vol. 437, pp. 235–39.

    Article  Google Scholar 

  8. L.M. Voronova, M.V. Degtyarev, T.I. Chashchukhina, Yu.G. Krasnoperova, and N.N. Resnina: Mater. Sci. Eng. A., 2015, vol. 639, pp. 155–64.

    Article  Google Scholar 

  9. S. Yamazaki, K. Yoshida, and T. Yano: J. Nucl. Mater., 2011, vol. 417, pp. 425–29.

    Article  Google Scholar 

  10. T. Yano, Y. Youb, and K. Kanazawa: J. Nucl. Mater., 2014, vol. 455, pp. 445–49.

    Article  Google Scholar 

  11. J. Drouet, L. Dupuy, F. Onimus, and F. Mompiou: Scr. Mater., 2016, vol. 119, pp. 71–75.

    Article  Google Scholar 

  12. L. Balogh, D.W. Brown, P. Mosbrucker, F. Long, and M.R. Daymond: Acta Mater., 2012, vol. 60, pp. 5567–77.

    Article  Google Scholar 

  13. R.S. Wang, C.L. Xu, X.B. Liu, P. Huang, and A. Ren: J. Alloy Compd., 2013, vol. 581, pp. 788–92.

    Article  Google Scholar 

  14. T. Yano, Y. Futamura, and S. Yamazaki: J. Nucl. Mater., 2013, vol. 442, pp. S399–S403.

    Article  Google Scholar 

  15. K.D. Rasch, R.W. Siegel, and H. Schultz: J. Nucl. Mater., 1978, vol. 69 & 70, pp. 622–24.

  16. K.D. Rasch, R.W. Siegel, and H. Schultz: Philos. Mag. A, 1980, vol. 41, pp. 91-117.

    Article  Google Scholar 

  17. H.P. Klug and L. Alexander: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed., John Wiley and Sons, New York, 1974.

    Google Scholar 

  18. G.K. Williamson and R.E. Smallman: Philos. Mag., 1956, vol. 1, pp. 34–46.

    Article  Google Scholar 

  19. J.R. Davis: Aluminum and Aluminum Alloys, ASM International, Materials Park, OH, 1993.

    Google Scholar 

  20. D.A. Porter, K.E. Easterling, and M.Y. Sherif: Phase Transformations in Metals and Alloys, CRC Press, Boca Raton, FL, 2009.

    Google Scholar 

  21. Y.J. Lin, B. Wu, S.L. Li, S.Y. Mao, X.J. Liu, Y.Q. Zhang, and L.M. Wang: Mater. Sci. Eng. A, 2015, vol. 621, pp. 212-17.

    Article  Google Scholar 

  22. O. Engler and V. Randle: Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, Taylor and Francis Group, Boca Raton, FL, 2010.

    Google Scholar 

Download references

Acknowledgments

Y.J. Lin acknowledges the financial support from the Fundamental Research Funds for the Central Universities (Grant No. WUT: 2016IVA003) and the One-Hundred Talents Project (Project No. 2010100005), Hebei, China. L.M. Wang acknowledges the financial support provided by the National Basic Research Program of China (973 Program No. 2015CB856805); National Natural Science Foundation of China (NSFC) (Grant No. 51421091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaojun Lin.

Additional information

Manuscript submitted 25 June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Mao, S., Lin, Y. et al. Recovery Phenomenon During Annealing of an As-Rapidly Solidified Al Alloy. Metall Mater Trans A 48, 3027–3035 (2017). https://doi.org/10.1007/s11661-017-4049-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4049-2

Keywords

Navigation