Skip to main content

Advertisement

Log in

Microstructural Evolution of the Interdiffusion Zone between U-9 Wt Pct Mo Fuel Alloy and Zr-1 Wt Pct Nb Cladding Alloy Upon Annealing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Diffusion couple formed between U-9 wt pct Mo and Zr-1 wt pct Nb alloys, proposed as fuel and clad materials, respectively, in nuclear research reactors, was annealed to investigate the microstructural evolution of the interdiffusion zone (IZ) as a function of temperature. A layered-type IZ microstructure was observed, the mechanism of development of which was elucidated. Mo2Zr phase, present as dispersoids, in the U-rich part of the as-bonded IZ evolved into a continuous layer and into a “massive” morphology upon annealing. The discontinuous precipitation reaction in the matrix adjoining the Mo2Zr phase, instigated by Mo depletion, generated lamellae of α-U phase within the γ-U(Mo,Zr) matrix. Zr-rich α-Zr(U) precipitates were observed in U-rich U-Mo-Zr matrix in the IZ next to the U-9Mo base material due to the clustering tendency of the matrix phase. The IZ next to Zr-1Nb base material comprised a “basket weave” microstructure of α-Zr laths with β-Zr(Nb,U) interlath boundaries, wherein an omega like transformation of the latter to δ-UZr2 was also noticed. The growth rates of the IZ were orders of magnitude lower when compared with the ones reported between the compositionally similar U-10 wt pct Mo alloy and the presently used Al or Al-Si cladding alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. JEOL is a trademark of JEOL Ltd., Tokyo.

References

  1. C.V. Sundaram and S.L. Mannan: Sadhana, 1989, vol. 14, pp. 21-57.

    Article  Google Scholar 

  2. IAEA-TECDOC-1637, 2009, pp. 5–6, http://www-pub.iaea.org/MTCD/publications/PDF/te_1637_web.pdf.

  3. Y.S. Kim: Reference Module in Materials Science and Materials Engineering, Comprehensive Nuclear Materials, 2012, vol. 3, pp. 391-422.

    Google Scholar 

  4. J.L. Snelgrove, G.L. Hofman, M.K. Meyer, C.L. Trybus, and T.C. Wiencek: Nucl. Eng. Des., 1997, vol. 178, pp. 119-26.

    Article  Google Scholar 

  5. M. Ugajin, A. Itoh, M. Akabori, N. Ooka, and Y. Nakakura: J. Nucl. Mater., 1998, vol. 254, pp. 78-83.

    Article  Google Scholar 

  6. M.K. Meyer, G.L. Hofman, S.L. Hayes, C.R. Clark, T.C. Wiencek, J.L. Snelgrove, R.V. Strain, and K.H. Kim: J. Nucl. Mater., 2002, vol. 304, pp. 221-36.

    Article  Google Scholar 

  7. K. Kim, D.B. Lee, C.K. Kim, I.H. Kuk, and K.W. Baek: IAEA-TECDOC-970, 1997, pp. 76–86, http://www-pub.iaea.org/MTCD/publications/PDF/te_970_prn.pdf.

  8. Y.S. Kim and G.L. Hofman: J. Nucl. Mater., 2011, vol. 419, pp. 291-301.

    Article  Google Scholar 

  9. S. Van Den Berghe and P. Lemoine: Nucl. Eng. Technol., 2014, vol. 46, pp. 125-46.

    Article  Google Scholar 

  10. P. Lemoine and D. Wachs: Report No. INL/CON-07-12889 (Preprint), 2007, http://www.inl.gov/technicalpublications/Documents/3881536.pdf.

  11. A. Leenaers, S. Van den Berghe, E. Koonen, C. Jarousse, F. Huet, M. Trotabas, M. Boyard, S. Guillot, L. Sannen, and M. Verwerft: J. Nucl. Mater., 2004, vol. 335, pp. 39-47.

    Article  Google Scholar 

  12. H.J. Ryu, Y.S. Kim, G. Hofman, J. Rest, J.M. Park, and C.K. Kim: Mater. Sci. Forum, 2007, vols. 558-559, pp. 319-22.

    Article  Google Scholar 

  13. S. Van den Berghe, W. Van Renterghem, and A. Leenaers: J. Nucl. Mater., 2008, vol. 375, pp. 340-46.

    Article  Google Scholar 

  14. E. Perez, D.D. Keiser, Jr., and Y.H. Sohn: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3071-83.

    Article  Google Scholar 

  15. A. Ewh, E. Perez, D.D. Keiser, Jr., and Y.H. Sohn: Diffus. Def. Data Part A, 2011, vols. 312-315, pp. 1055-62.

    Article  Google Scholar 

  16. H.Y. Chiang, T. Zweifel, H. Palancher, A. Bonnin, L. Beck, P. Weiser, M. Döblinger, C. Sabathier, R. Jungwirth, and W. Petry: J. Nucl. Mater., 2013, vol. 440, pp. 117-23.

    Article  Google Scholar 

  17. H.J. Ryu, J.M. Park, C.K. Kim, Y.S. Kim, and G.L. Hofman: J. Phase Equilib. Diffus., 2006, vol. 27, pp. 651-58.

    Article  Google Scholar 

  18. D.D. Keiser, J.F. Jue, B. Yao, E. Perez, Y.H. Sohn, and C.R. Clark: J. Nucl. Mater., 2011, vol. 412, pp. 90-99.

    Article  Google Scholar 

  19. B. Yao, E. Perez, D.D. Keiser, Jr., J.F. Jue, C.R. Clark, N. Woolstenhulme, and Y.H. Sohn: J. Alloys Compds., 2011, vol. 509, pp. 9487-96.

    Article  Google Scholar 

  20. F. Mazaudier, C. Proye, and F. Hodaj: J. Nucl. Mater., 2008, vol. 377, pp. 476-85.

    Article  Google Scholar 

  21. C. Komar Varela, M. Mirandou, S. Aricó, S. Balar, and L. Gribaudo: J. Nucl. Mater., 2009, vol. 395, pp. 162-68.

    Article  Google Scholar 

  22. Y. Kim, G. Hofman, H. Ryu, and S. Hayes: J. Phase Equilib. Diffus., 2006, vol. 27, pp. 614-21.

    Article  Google Scholar 

  23. H.J. Ryu, Y.S. Han, J.M. Park, S.D. Park, and C.K. Kim: J. Nucl. Mater., 2003, vol. 321, pp. 210-20.

    Article  Google Scholar 

  24. A. Leenaers, S. Van den Berghe, W. Van Renterghem, F. Charollais, P. Lemoine, C. Jarousse, A. Röhrmoser, and W. Petry: J. Nucl. Mater., 2011, vol. 412, pp. 41-52.

    Article  Google Scholar 

  25. A. Leenaers, C. Detavernier, and S. Van den Berghe: J. Nucl. Mater., 2008, vol. 381, pp. 242-48.

    Article  Google Scholar 

  26. J.M. Park, H.J. Ryu, S.J. Oh, D.B. Lee, C.K. Kim, and Y.S. Kim: J. Nucl. Mater., 2008, vol. 374, pp. 422-30.

    Article  Google Scholar 

  27. D.L. Porter and A. Ewh: Report No. INL/EXT-10-17972 (Revision 1), 2010, http://www.inl.gov/technicalpublications/Documents/4680336.pdf.

  28. E. Perez, Y.H. Sohn, and D.D. Keiser, Jr.: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 584-95.

    Article  Google Scholar 

  29. A. Leenaers, S. Van den Berghe, and C. Detavernier: J. Nucl. Mater., 2013, vol. 439, pp. 7-18.

    Article  Google Scholar 

  30. A. Leenaers, S. Van den Berghe, J. Van Eyken, E. Koonen, F. Charollais, P. Lemoine, Y. Calzavara, H. Guyon, C. Jarousse, D. Geslin, D. Wachs, D. Keiser, A. Robinson, G. Hofman, and Y.S. Kim: J. Nucl. Mater., 2013, vol. 441, pp. 439-48.

    Article  Google Scholar 

  31. D.D. Keiser, Jr., J.F. Jue, N.E. Woolstenhulme, and A. Ewh: J. Nucl. Mater., 2011, vol. 419, pp. 226-34.

    Article  Google Scholar 

  32. Y.S. Kim, G.L. Hofman, A.B. Robinson, D.M. Wachs, H.J. Ryu, J.M. Park, and J.H. Yang: J. Nucl. Mater., 2012, vol. 427, pp. 233-38.

    Article  Google Scholar 

  33. A. Ewh, E. Perez, D.D. Keiser, Jr., and Y.H. Sohn: J. Phase Equilib. Diffus., 2010, vol. 31, pp. 216-22.

    Article  Google Scholar 

  34. A.B. Robinson, D.M. Wachs, D.E. Burkes, and D.D. Keiser: Report No. INL/CON-08-14916 (Preprint), 2008, http://www.inl.gov/technicalpublications/Documents/4282340.pdf.

  35. E. Perez, B. Yao, D.D. Keiser, Jr., and Y.H. Sohn: J. Nucl. Mater., 2010, vol. 402, pp. 8-14.

    Article  Google Scholar 

  36. D.D. Keiser, Jr., J.F. Jue, and D.E. Burkes: Report No. INL/CON-07-12224 (Preprint), 2007, http://www.inl.gov/technicalpublications/Documents/3667230.pdf.

  37. A.B. Robinson, G.S. Chang, D.D. Keiser, Jr., D.M. Wachs, and D.L. Porter: Report No. INL/EXT-09-16807, 2009, http://www.inl.gov/technicalpublications/Documents/4363871.pdf.

  38. Y. Park, J. Yoo, K. Huang, D.D. Keiser, Jr., J.F. Jue, B. Rabin, G. Moore, and Y.H. Sohn: J. Nucl. Mater., 2014, vol. 447, pp. 215–24.

    Article  Google Scholar 

  39. J.F. Jue, T.L. Trowbridge, C.R. Breckenridge, G.A. Moore, M.K. Meyer, and D.D. Keiser, Jr.: J. Nucl. Mater., 2015, vol. 460, pp. 153–59.

    Article  Google Scholar 

  40. Y. Park, N. Eriksson, D.D. Keiser, Jr., J.F. Jue, B. Rabin, G. Moore, and Y.H. Sohn: Mater. Charact., 2015, vol. 103, pp. 50–57.

    Article  Google Scholar 

  41. L. Pavlinov, A. Nakonechnikov, and V. Bykov: Atomic Energy, 1965, vol. 19, pp. 1495-97.

    Article  Google Scholar 

  42. ASM Handbook, vol. 3, Alloy Phase Diagrams, H. Baker, ed., ASM International, Materials Park, 1992.

  43. Y. Liu, D. Yu, Y. Du, G. Sheng, Z. Long, J. Wang, and L. Zhang: Calphad, 2012, vol. 37, pp. 49-56.

    Article  Google Scholar 

  44. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak: Binary Alloy Phase Diagrams, 2nd ed., ASM INTERNATIONAL, Materials Park, OH, 1990.

    Google Scholar 

  45. E.E. Pasqualini: Proc. 27th Int. Meeting on Reduced Enrichment for Research and Test Reactors (RERTR), Boston, MA, 2005, http://www.rertr.anl.gov/RERTR27/PDF/S15-3_Pasqualini.pdf.

  46. D.A. Lopes, A.J.O. Zimmermann, S.L. Silva, and J.R.C. Piqueira: J. Nucl. Mater., 2016, vol. 473, pp. 136-42.

    Article  Google Scholar 

  47. E.E. Pasqualini, A.B. Robinson, D.L. Porter, D.M. Wachs, and M.R. Finlay: J. Nucl. Mater., 2016, vol. 479, pp. 402-10.

    Article  Google Scholar 

  48. S. Neogy, A. Laik, M.T. Saify, D. Srivastava, S.K. Jha, and G.K. Dey: Phil. Mag. Lett., 2014, vol. 94, pp. 163–71.

    Article  Google Scholar 

  49. G.P. Sabol, G.R. Kilp, M.G. Balfour, and E. Roberts: ASTM STP 1023, Zirconium in the Nuclear Industry: 8th Int. Symp., L.F.P. Van Swam and C.M. Eucken, eds., ASTM, Philadelphia, PA, 1989, pp. 227–44.

  50. G.P. Sabol, G. Schoenberger, and M.G. Balfour: IAEA-TECDOC-665, 1992, pp. 122–30.

  51. C. Lemaignan and A.T. Motta: in Nuclear Materials II, Materials Science and Technology, A Comprehensive Treatment, 10B, R.W. Cahn, P. Hassen, and E.J. Kramer, eds., VCH, 1994, pp. 1–51.

  52. M.I. Mirandou, S.N. Balart, M. Ortiz, and M.S. Granovsky: J. Nucl. Mater., 2003, vol. 323, pp. 29-35.

    Article  Google Scholar 

  53. E. Perez, D.D. Keiser, and Y.H. Sohn: Defect Diffus. Forum, 2009, vols. 289-292, pp. 41-49.

    Article  Google Scholar 

  54. M. Mirandou, S. Aricó, M. Rosenbusch, M. Ortiz, S. Balart, and L. Gribaudo: J. Nucl. Mater., 2009, vol. 384, pp. 268-73.

    Article  Google Scholar 

  55. M.I. Mirandou, S.F. Aricó, S.N. Balart, and L.M. Gribaudo: Mater. Charact., 2009, vol. 60, pp. 888-93.

    Article  Google Scholar 

  56. E. Perez, D.D. Keiser, Jr., B. Yao, and Y.H. Sohn: Report No. INL/CON-09-17105 (Preprint), 2009, https://inldigitallibrary.inl.gov/sti/4408272.pdf

  57. K. Huang, Y. Park, D.D. Keiser, Jr., and Y.H. Sohn: J. Phase Equilib. Diffus., 2012, vol. 33, pp. 443-49.

    Article  Google Scholar 

  58. Y. Park, D.D. Keiser, Jr., and Y.H. Sohn: J. Nucl. Mater., 2015, vol. 456, pp. 351–58.

    Article  Google Scholar 

  59. C.T. Lee, J.H. Park, T.K. Kim, U.J. Lee, B.S. Lee, and D.S. Sohn: J. Nucl. Mater., 2008, vol. 373, pp. 275-79.

    Article  Google Scholar 

  60. V.P. Sinha, P.V. Hegde, G.J. Prasad, G.K. Dey, and H.S. Kamath: J. Alloys Compds., 2010, vol. 491, pp. 753-60.

    Article  Google Scholar 

  61. A. Landa, P. Söderlind, and P.E.A. Turchi: J. Nucl. Mater., 2011, vol. 414, pp. 132-37.

    Article  Google Scholar 

  62. K. Huang, Y. Park, D.D. Keiser, Jr., and Y.H. Sohn: J. Phase Equilib. Diff., 2013, vol. 34, pp. 307-12.

    Article  Google Scholar 

  63. Y. Adda and A. Kirianenko: J. Nucl. Mater., 1962, vol. 6, pp. 135-36.

    Article  Google Scholar 

  64. G.H. May: J. Nucl. Mater., 1962, vol. 7, pp. 72-84.

    Article  Google Scholar 

  65. S. Neogy, M.T. Saify, S.K. Jha, D. Srivastava, and G.K. Dey: Philos. Mag., 2015, vol. 95, pp. 2866–84.

    Article  Google Scholar 

  66. W.G. Burgers: Physica, 1934, vol. 1, pp. 561-86.

    Article  Google Scholar 

  67. sM. Akabori, A. Itoh, T. Ogawa, F. Kobayashi, and Y. Suzuki: J. Nucl. Mater., 1992, vol. 188, pp. 249-54.

    Article  Google Scholar 

  68. M. Akabori, T. Ogawa, A. Itoh, and Y. Morii: J. Phys.: Condens. Matter, 1995, vol. 7, pp. 8249-57.

    Google Scholar 

  69. C.B. Basak, N. Prabhu, and M. Krishnan: Intermetallics, 2010, vol. 18, pp. 1707-12.

    Article  Google Scholar 

  70. C.B. Basak, S. Neogy, D. Srivastava, G.K. Dey, and S. Banerjee: Philos. Mag., 2011, vol. 91, pp. 3290-3306.

    Article  Google Scholar 

  71. V. Raghavan: Solid State Phase Transformations, Prentice Hall, New Delhi, 1987.

    Google Scholar 

  72. S. Banerjee and P. Mukhopadhyay: Phase Transformations: Examples from Titanium and Zirconium Alloys, Pergamon Press, Oxford, United Kingdom, 2004.

    Google Scholar 

  73. C. Wagner: Acta Metall., 1969, vol. 17, pp. 99–107.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Nuclear Fuel Complex (Hyderabad, India) for providing the Zr-1Nb material used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Neogy.

Additional information

Manuscript submitted October 1, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neogy, S., Laik, A., Saify, M.T. et al. Microstructural Evolution of the Interdiffusion Zone between U-9 Wt Pct Mo Fuel Alloy and Zr-1 Wt Pct Nb Cladding Alloy Upon Annealing. Metall Mater Trans A 48, 2819–2833 (2017). https://doi.org/10.1007/s11661-017-4033-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4033-x

Keywords

Navigation