Metallurgical and Materials Transactions A

, Volume 48, Issue 5, pp 2363–2374 | Cite as

Continuous Measurements of Recrystallization and Grain Growth in Cobalt Super Alloys

  • Mahsa Keyvani
  • Thomas Garcin
  • Damien Fabrègue
  • Matthias Militzer
  • Kenta Yamanaka
  • Akihiko Chiba


L605 (20Cr-15W-10Ni wt pct) and CCM (28Cr-6Mo wt pct) cobalt-based superalloys are candidates for a wide range of applications, from gas turbine components to biomedical implants. Attention is currently focused on the optimization of grain structure as an appropriate approach to increase yield stress without affecting significantly the ductility. In this study, the Laser Ultrasonics for Metallurgy (LUMet) technology is used to examine in situ the evolution of the mean grain size associated with recrystallization and grain growth during heat treatments from the cold-rolled state. The recrystallization process is completed at 1373 K (1100 °C) for L605 and 1273 K (1000 °C) for CCM. The subsequent grain growth rate in L605 is larger compared to CCM. Continuous measurements of the grain size evolution are found to be consistent with grain growth affected by solute drag. Through in situ measurements, the laser ultrasonic technology significantly accelerates the determination of metallurgical parameters allowing for fast optimization of process parameters required to meet specific applications.


Grain Size Distribution Twin Boundary Elastic Anisotropy Isothermal Holding Ultrasonic Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge the financial support received from the Natural Sciences and Engineering Research Council (NSERC) of Canada. Eiwa Co., Ltd in Japan is thanked for providing the material and test samples. Also, the authors would like to express gratitude to Dr. Julien Favre for fruitful discussions.


  1. 1.
    D. Coutsouradis, A. Davin and M. Lamberigts, Mater. Sci. Eng. 1987, vol. 88, pp. 11–19.CrossRefGoogle Scholar
  2. 2.
    J.E. Restall and D.J. Stephenson, Mater. Sci. Eng. A, 1987, vol. 88, pp. 273–82.CrossRefGoogle Scholar
  3. 3.
    R. Balcon, R. Beyar, S. Chierchia, I. De Scheerder, P.G. Hugenholtz, F. Kiemeneij, B. Meier, J. Meyer, J.P. Monassier, and W. Wijns: Eur. Heart J., 1997, vol. 18, pp. 1536–47.CrossRefGoogle Scholar
  4. 4.
    F. Etave, G. Finet, M. Boivin, J.C. Boyer, G. Rioufol and G. Thollet, J. Biomech., 2001, vol. 34, pp. 1065-75.CrossRefGoogle Scholar
  5. 5.
    J. Favre, D. Fabrègue, A. Chiba and E. Maire, Philos. Mag. A, 2014, vol. 94, pp. 1992-2008.CrossRefGoogle Scholar
  6. 6.
    P. S. Kotval, Metallography, 1969, vol. 1, pp. 251–85.CrossRefGoogle Scholar
  7. 7.
    J. R. Davis, ASM Specialty Handbook, Nickel, Cobalt, And their Alloys, ASM International, Materials Park, OH, 2000.Google Scholar
  8. 8.
    K.P. Gupta, J. Phase Equilib. Diffus. Diff., 2006, vol. 27, pp. 178-83.CrossRefGoogle Scholar
  9. 9.
    C.T. Sims, N.S. Stoloff and W.C. Hagel, Superalloys ΙΙ: High-Temperature Materials for Aerospace and Industrial Power, 2nd ed., Wiley-Interscience, New York, NY, 1987.Google Scholar
  10. 10.
    A. Chiba, K. Kumagai, N. Nomura and S. Miyakawa, Acta Mater., 2007, vol. 55, pp. 1309-1318.CrossRefGoogle Scholar
  11. 11.
    A. Chiba, N. Nomura and Y. Ono, Acta Mater., 2007, vol. 55, pp. 2119-28.CrossRefGoogle Scholar
  12. 12.
    K. Yamanaka, M. Mori, and A. Chiba, Mater. Sci. Eng. A, 2001, vol. 538, pp. 5961-66.Google Scholar
  13. 13.
    M. Dubois, A. Moreau, M. Militzer, and J.F. Bussière: in Proceedings of 3rd International Conference on Grain Growth, 1998, pp. 593–98.Google Scholar
  14. 14.
    S. Kruger, G. Lamouche, and J. P. Monchalin, Iron Steel Technol., 2005, vol. 2, pp. 25-31.Google Scholar
  15. 15.
    S. Sarkar, A. Moreau, M. Militzer and W. Poole, Metall. Mater. Trans. A, 2008, vol. 39A, pp. 897-907.CrossRefGoogle Scholar
  16. 16.
    B.W. Krakauer and A. Moreau: in Proceedings of International Symposium on Advanced Sensors for Metals, 1999, pp. 41–52.Google Scholar
  17. 17.
    M. Militzer, T. Garcin and W. J. Poole, Mater. Sci. Forum, 2013, vol. 753, pp. 25-30.CrossRefGoogle Scholar
  18. 18.
    S. Sundin and D. Artymowicz, Metall. Mater. Trans. A, 2002, vol. 33A, pp. 687-91.CrossRefGoogle Scholar
  19. 19.
    M. Maalekian, R. Radis, M. Militzer, A. Moreau and W. J. Poole, Acta Mater., 2012, vol. 60, pp. 1015-25.CrossRefGoogle Scholar
  20. 20.
    T. Garcin, J.H. Schmitt, and M. Militzer: in Proceedings of Eurosuperalloys, 2014, pp. 5–10.Google Scholar
  21. 21.
    T. Garcin, J.H. Schmitt and M. Militzer, J. Alloys Compd., 2016, vol. 670, pp. 329-36.CrossRefGoogle Scholar
  22. 22.
    S.E. Kruger, A. Moreau, C. Bescond, and J.P. Monchalin: in Proceedings of 16th Conference on Non-destructive Testing, 2004, CD-ROM ICNDT.Google Scholar
  23. 23.
    T. Garcin, CTOME V1.55: Software for the analysis of ultrasound wave properties in metal.
  24. 24.
    S.I. Wright, M.M. Nowell, and D.P. Field, Microsc. Microanal., 2011, vol. 17, pp. 316-29.CrossRefGoogle Scholar
  25. 25.
    V. Randle, Interface Sci., 2002, vol. 10, pp. 271-77.CrossRefGoogle Scholar
  26. 26.
    M.H. Alvi, S.W. Cheong, J.P. Suni, H. Weiland and A.D. Rollett, Acta Mater., 2008, vol. 56, pp. 3098-108.CrossRefGoogle Scholar
  27. 27.
    A.K. Giumelli, M. Militzer and E.B. Hawbolt, ISIJ Int., 1999, vol. 39, pp. 271-80.CrossRefGoogle Scholar
  28. 28.
    J. Rudnizki, B. Zeislmair, U. Prahl and W. Bleck, Comput. Mater. Sci., 2010, vol. 49, pp. 209-16.CrossRefGoogle Scholar
  29. 29.
    J.D. Aussel and J.P. Monchalin, J. Appl. Phys., 1989, vol. 65, pp. 2918-22.CrossRefGoogle Scholar
  30. 30.
    H. Ogi, H. Ledbetter and S. Kim, Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1671–77.CrossRefGoogle Scholar
  31. 31.
    A. Granato and K. Lucke, J. Appl. Phys., 1956, vol. 27, pp. 583–93.CrossRefGoogle Scholar
  32. 32.
    V.F. Coronel and D.N. Beshers, J. Appl. Phys., 1988, vol. 64, pp. 2006–015.CrossRefGoogle Scholar
  33. 33.
    A. Moreau, M. Lord, D. Lévesque, M. Dubois and J. F. Bussière, J. Alloys Compd., 2000, vol. 310, pp. 427-31.CrossRefGoogle Scholar
  34. 34.
    M. Dubois, M. Militzer, A. Moreau and J. F. Bussière, Scripta Mater., 2000, vol. 42, pp. 867-74.CrossRefGoogle Scholar
  35. 35.
    F.E. Stanke and G.S. Kino, J. Acoust. Soc. Am., 1984, vol. 75, pp. 665-81.CrossRefGoogle Scholar
  36. 36.
    D. Nicoletti, N. Bilgutay and B. Onaral, J. Acoust. Soc. Am., 1992, vol. 91, pp. 3278–84.CrossRefGoogle Scholar
  37. 37.
    E.P. Papadakis, J. Acoust. Soc. Am., 1965, vol. 37, pp. 711–17.CrossRefGoogle Scholar
  38. 38.
    A.B. Bhatia, J. Acoust. Soc. Am., 1959, vol. 31, pp. 16–23.CrossRefGoogle Scholar
  39. 39.
    S. Hirsekorn, J. Acoust. Soc. Am., 1982, vol. 72, pp. 1021–31.CrossRefGoogle Scholar
  40. 40.
    J. A. Turner, J. Acoust. Soc. Am., 1999, vol. 106, pp. 541–52.CrossRefGoogle Scholar
  41. 41.
    T. Williams and C. Kelley: Gnuplot 4.6: An interactive plotting program, 2014.Google Scholar
  42. 42.
    ASTM E112-12: Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PA, 2013.Google Scholar
  43. 43.
    S. Shahandeh, M. Greenwood, and M. Militzer, Model. Simul. Mater. Sci. Eng., 2012, vol. 20, pp. 65008-028.CrossRefGoogle Scholar
  44. 44.
    N. Yukawa, and K. Sato, Trans. Jpn. Inst. Met., 1968, vol. 9, pp. 680-86.CrossRefGoogle Scholar
  45. 45.
    K. Ueki, K. Ueda, and T. Narushima, Key Eng. Mater., 2014, vol. 616, pp. 258-62.CrossRefGoogle Scholar
  46. 46.
    S. Mineta, Alfirano, S. Namba, T. Yoneda, K. Ueda, and T. Narushima, Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3351-58.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2017

Authors and Affiliations

  • Mahsa Keyvani
    • 1
  • Thomas Garcin
    • 1
  • Damien Fabrègue
    • 2
    • 3
  • Matthias Militzer
    • 1
  • Kenta Yamanaka
    • 4
  • Akihiko Chiba
    • 4
  1. 1.The Centre for Metallurgical Process EngineeringThe University of British ColumbiaVancouverCanada
  2. 2.Université de Lyon, CNRSVilleurbanneFrance
  3. 3.INSA-Lyon, MATEIS UMR5510VilleurbanneFrance
  4. 4.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations