Skip to main content

Advertisement

Log in

Cluster Variation Method as a Theoretical Tool for the Study of Phase Transformation

  • Symposium: PTM 2015: Solid-Solid Phase Transformations in Inorganic Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Cluster variation method (CVM) has been widely employed to calculate alloy phase diagrams. The atomistic feature of the CVM is consistent with first-principles electronic structure calculations, and the combination of CVM with electronic structure calculation enables one to formulate free energy from the first-principles. CVM free energy conveys affluent information of a given system, and the second-order derivative traces the stability locus against configurational fluctuation. The kinetic extension of the CVM is the path probability method (PPM) which is utilized to calculate transformation and relaxation kinetics associated with the temperature change. Hence, the CVM and PPM are coherent methods to perform a synthetic study from initial non-equilibrium to final equilibrium states. By utilizing CVM free energy as a homogeneous free energy density term, one can calculate the time evolution of ordered domains within the phase field method. Finally, continuous displacement cluster variation method (CDCVM) is discussed as the recent development of CVM. CDCVM is capable of introducing the local lattice displacement into the free energy. Moreover, it is shown that CDCVM can be extended to study collective atomic displacements leading to displacive phase transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a :

Lattice constant

E :

Internal energy

\( \Delta E \) :

Heats of formation

\( E_{\hbox{max} } \) :

Largest cluster in the expansion of internal energy

\( e_{ij} (e_{ij}^{0} ) \) :

Pair interaction energy between species i and j

F, ∆F :

Free energy

F 0 :

Homogeneous free energy

F T :

Fourier transform

\( F_{ll'} ,\,F^{\prime\prime} \) :

Second-order derivative of free energy F

\( F_{\text{chem}} \) :

Chemical free energy of the entire system

\( f\left( {{\bf{r}}_{i} } \right) \) :

Point distribution function, probability of finding an atomic species i at \( {\bf{r}}_{i} g_{ij} \left( {{\bf{r}}_{i} ,{\bf{r^{\prime}}}_{j} } \right) \) pair distribution function, probability of finding a pair of species i and j at \( {\bf{r}}_{i} \) and \( {\bf{r^{\prime}}}_{j} \), respectively

H :

Hamiltonian

\( I_{\text{SRO}}^{{}} \left( {\bf{k}} \right) \) :

Short range order diffuse scattering intensity

\( L_{ij} \) :

Relaxation constant

\( k_{B} \) :

Boltzmann constant

M :

Mobility

N :

Total number of atoms (lattice points)

\( {\tilde{\bf{R}}} \) :

Rotation operator

S :

Entropy

S max :

Largest cluster involved in the entropy formula

T :

Temperature

T 0 :

Instability temperature (spinodal-ordering temperature)

T s :

Spinodal-ordering temperature

T t :

Transition temperature

\( t,\,\Delta t \) :

Time

t′:

Normalized time with respect to relaxation constant

\( u_{ijklmn} \) :

Octahedron cluster probability of finding atomic species specified by subscripts

\( v_{j} \) :

Effective cluster interaction energy for a cluster designated by j

V(r):

Volume (atomic distance)

\( \tilde{V}_{{\left\{ J \right\}}} \left( {l,l^{\prime}} \right) \) :

V-matrix for atomic configuration specified by J. l’ is a sub-cluster involved in the cluster l

\( w_{ijkl} \) :

Tetrahedron cluster probability of finding atomic species specified by subscripts

\( w_{{_{ijkl} }}^{(s)} \) :

Square cluster probability of finding atomic species specified by subscripts

\( w_{{_{ijkl} }}^{(r)} \) :

Rectangle cluster probability of finding atomic species specified by subscripts

\( W_{ijkl,mnop}^{\alpha \alpha \beta \beta } \) :

Tetrahedron path variable indicating time transition from atomic species ijkl at time t to mnop at time \( t + \Delta t \) on the sublattice points \( \alpha \alpha \beta \beta \)

\( x_{i} \) :

Point cluster probability/concentration of species i

\( X_{{\left\{ J \right\}}} \) :

Cluster probability of configuration specified by J

\( X_{i,j} \) :

Point path variable indicating time transition from atomic species i at time t to j at time \( t + \Delta t \)

\( y_{ij} \) :

Pair cluster probability for atomic pair i–j/concentration of pair cluster i–j

\( Y_{ij,kl}^{\alpha \alpha } \) :

Pair path variable indicating time transition from atomic species ij at time t to kl at time \( t + \Delta t \)on the sublattice points αα

\( \delta X_{l}^{*} \left( {\bf{k}} \right) \) :

Fourier transformation of correlation function of \( \delta \xi_{l} \)

z:

Coordination number

\( z_{ijk} \) :

Triangle cluster probability for triangle arrangement of atomic species i–j–k

Z :

Partition function

\( \left| {\delta Z_{l} \left( {\bf{k}} \right)} \right| \) :

Normal mode amplitude

α, β :

Sublattice point \( \beta_{\text{B}} = {1 \mathord{\left/ {\vphantom {1 {k_{\text{B}} }}} \right. \kern-0pt} {k_{\text{B}} }} \cdot T \)

γ, δ :

Cluster

\( \xi_{i} \) :

Correlation function for a cluster i

\( \delta \xi_{l} \) :

Deviation of correlation function from equilibrium value

η :

Long range order parameter

η i :

ith field variable

θ :

Spin flop probability per unit time

κ i :

Gradient energy coefficient for field variable η i

λ :

Lagrange multiplier

\( \varLambda_{l} \left( {\bf{k}} \right) \) :

Eigen value of the determinant of the second-order derivative matrix of the free energy

μ i :

Chemical potential for species i

\( \rho ,\,\rho_{\text{eq}} \) :

The density of the state

\( eq \) :

Stands for equilibrium state

σ :

Spin variable

\( \left\{ {\varvec{\upsigma}} \right\} \) :

Atomic configuration

\( \phi_{ij} \left( {{\bf{r}}_{i} ,{\bf{r}}'_{j} } \right) \) :

Pair potential between species i and j

\( \varPhi \equiv {{\beta_{\text{B}} F} \mathord{\left/ {\vphantom {{\beta_{\text{B}} F} N}} \right. \kern-0pt} N} \) :

Thermodynamic potential per lattice point

\( \varphi_{\text{S}} \) :

Cluster probability within PFM

\( \chi_{ijklmnop} \) :

Cubic cluster probability

\( \varPsi \equiv {F \mathord{\left/ {\vphantom {F N}} \right. \kern-0pt} N} \) :

Thermodynamic potential

ω :

z/2

\( \varXi \) :

Path variable

References

  1. W. L. Bragg and E. J. Williams: Proc. R. Soc. London, 1934, A145, pp.699-730.

    Article  Google Scholar 

  2. R. Kikuchi: Phys. Rev. 1951, 81, pp.998-1003.

    Google Scholar 

  3. C. M. van Baal: Physica, Utrecht, 1973, 64, pp. 571-586.

    Article  Google Scholar 

  4. Tetsuo Mohri: Alloy Physics, Chapt. 10, ed. W. Pfeiler, Wiley, 2007, pp. 525–588.

  5. Y. Chen, T. Atago and T. Mohri: J. Phys. Condens. Matter, 2002, 14, pp. 1903-1913.

    Google Scholar 

  6. T. Mohri and Y. Chen: Mater. Trans., 2002, 43, pp.2104-2109.

    Article  Google Scholar 

  7. Y. Chen, S. Iwata and T. Mohri: Calphad, 2002, 26, pp. 583-589.

    Article  Google Scholar 

  8. T. Mohri and Y. Chen: Mat. Trans., 2004, 45, pp. 1478-1484.

    Article  Google Scholar 

  9. T. Mohri and Y. Chen: J. Alloys and Compounds, 2004, 383, pp. 23-31.

    Article  Google Scholar 

  10. Ying Chen, Shuichi Iwata and Tetsuo Mohri: Materials Science Forum, 2005, 475-479, pp. 3127-3130.

    Article  Google Scholar 

  11. Ying Chen, Shuichi Iwata and Tetsuo Mohri: RARE METALS, 2006, 25, pp. 437-440.

    Article  Google Scholar 

  12. Tetsuo Mohri, Ying Chen and Yu Jufuku: CALPHAD, 2009, 33, pp. 244-249.

    Article  Google Scholar 

  13. Tetsuo Mohri: Journal of Phase Equilibria and Diffusion, 2011, 32, pp. 537-542.

    Article  Google Scholar 

  14. Tetsuo Mohri: J. Mater. Sci., 2015, 50, pp.7705-7712.

    Article  Google Scholar 

  15. D. de Fontaine: Acta Metal., 1975, 23, pp. 553-571.

    Article  Google Scholar 

  16. J.M. Sanchez: Physica, 1982, 111A, pp. 200-216.

    Article  Google Scholar 

  17. T. Mohri, J. M. Sanchez and D. de Fontaine: Acta metall., 1985, Vol. 33, pp. 1463-1474.

    Article  Google Scholar 

  18. D. de Fontaine, A. Finel and T. Mohri: Scripta metall., 1986, Vol. 20, pp.1045-1047.

    Article  Google Scholar 

  19. R. Kikuchi: Prog. Theor. Phys. Suppl., 1966, 35, pp. 1-64.

    Article  Google Scholar 

  20. T. Mohri: Statics and Dynamics of Alloy Phase Transformations, ed. P. E. A. Turchi, Plenum Press, New York, 1994, pp. 665–68.

  21. L.-Q. Chen: Ann. Rev. Mat. Res., 2002, 32, pp. 113-140. and references therein.

    Article  Google Scholar 

  22. M. Ohno: Ph.D dissertation, Grad. School of Engr., 2004, Hokkaido Univ.

  23. T. Mohri, M.Ohno and Y. Chen: J. Phase Equlibria and Diffusion, 2006, 27, pp. 47-53.

    Article  Google Scholar 

  24. R. Kikuchi: J. Phase. Equilibria, 1998, 19, pp. 412-421. and references therein.

    Article  Google Scholar 

  25. Tetsuo Mohri: Comp. Mat. Sci. and Engr., 2012, 1, pp.1250018-1.

    Google Scholar 

  26. Tetsuo Mohri, Ying Chen and Naoya Kiyokane: J. Alloys and Compounds, 2013, 577S, pp. S123-S126.

    Article  Google Scholar 

  27. N. Chen: Möbius Inversion in Physics, World Scientific, Tshinghua University, China, 2010.

    Book  Google Scholar 

  28. T. Mohri: The Journal of The Minerals, Metals & Materials Society (TMS), 2013, 65, pp. 1510-1522.

    Article  Google Scholar 

  29. G. An: J Stat Phys, 1988, 52, pp. 727-734.

    Article  Google Scholar 

  30. T. Morita: J Stat Phys., 1990, 59, pp. 819-825.

    Article  Google Scholar 

  31. T. Morita: Progress of Theoretical Physics Supplement, 1994, 115, pp.27-39.

    Article  Google Scholar 

  32. F. Ducastelle: Order and Phase Stability in Alloys (Cohesion and Structure, Vol. 3 ed. de Boer, F.R. and Pettifor, D. G.), North-Holland, 1991.

  33. J.M. Sanchez and D. de Fontaine: Phys. Rev., 1978, B17, pp. 2926-2936.

    Article  Google Scholar 

  34. J.M. Sanchez, F. Ducastelle and D.Gratias: Physica (Utrecht), 1984, 128A, pp. 334-350.

    Google Scholar 

  35. T. Mohri, J.M. Sanchez and D. de Fontaine: Acta Metal., 1985, 33, pp.1171-1185.

    Article  Google Scholar 

  36. J.W. Connolly and A.R. Williams: Phys. Rev., 1983, B27, pp. 5169-5172.

    Article  Google Scholar 

  37. J.A. Barker: Proc. Roy. Soc., 1953, A216, pp. 45-56.

    Article  Google Scholar 

  38. H. Bethe: Proc. Royal Soc., 1935, A150, pp. 552-575.

    Article  Google Scholar 

  39. R. Kikuchi: J. Chem. Phys., 1974, 60, pp. 1071-1080.

    Article  Google Scholar 

  40. M. Richards and J.W. Cahn: Acta Metal., 1971, 19, pp.1263-1277.

    Article  Google Scholar 

  41. H. J. F. Jansen, and A. J. Freeman: Phys. Rev., 1984, B30, pp. 561-569.

    Article  Google Scholar 

  42. V. Morruzi, J.F. Janak, K. Schwarz: Phys. Rev., 1988, B37, pp. 790-799.

    Article  Google Scholar 

  43. Tetsuo Mohri, Tomohiko Morita, Naoya Kiyokane and Hiroaki Ishii: J. Phase Equilibria and Diffusion, 2009, 30, pp. 553-558.

    Article  Google Scholar 

  44. T. Mohri, K. Terakura, T. Oguchi and K. Watanabe: Phase Transformation ‘87, ed.G. W. Lorimer, The Institute of Metals 1988, pp. 433–37.

  45. T. Mohri, S. Takizawa and K. Terakura: Mater. Trans., JIM, 1990, 31, pp. 315–16.

  46. T. Mohri, K. Terakura, S. Takizawa and J.M. Sanchez: Acta Metal., 1991, 39, pp. 493-501.

    Article  Google Scholar 

  47. S. Wei, A.Mbaye, L Ferreria and A. Zunger: Phys. Rev., 1987, B36, pp. 4163-4185.

    Article  Google Scholar 

  48. S. Wei, L. Ferreira and A. Zunger: Phys. Rev., 1990, B41, pp. 8240-8269.

    Article  Google Scholar 

  49. S. Wei, L. Ferreira and A. Zunger: Phys. Rev., 1992, B45, pp. 2533-2536.

    Article  Google Scholar 

  50. S. Wei and A. Zunger: Phys. Rev., 1993, B48, pp. 6111-6115.

    Article  Google Scholar 

  51. T. Mohri, K. Nakamura and T. Ito: J. Appl. Phys., 1991, 70, pp. 1320-1330.

    Article  Google Scholar 

  52. K. Nakamura and T. Mohri: Modelling and Simul. Mater.Sci. Eng., 1993, 1, pp. 143-150.

    Article  Google Scholar 

  53. T. Mohri: Prog. Theoret. Phys. Suppl., 1994, 115, pp. 147-164.

    Article  Google Scholar 

  54. R. J. Glauber: J. Math. Phys., 1953, 4, pp. 294-307.

    Article  Google Scholar 

  55. K. Kawasaki: Phys. Rev., 1966, 145, pp. 224-230.

    Article  Google Scholar 

  56. Y. Ichikawa: ME Thesis, School of Engr., 1994, Hokkaido University.

  57. T. Mohri: Structural and Phase Stability of Alloys, ed. J.L. Moran-Lopez, Plenum Press, New York, 1992, pp. 87–101.

  58. T. Mohri: Interatomic Potential and Structural Stability, ed. K. Terakura, Springer, Heidelberg, Berlin, 1993, pp.168–77.

  59. T. Mohri and T. Ikegami: Defect and Diffusion Forum, 1993, 95-98, pp.119-124.

    Article  Google Scholar 

  60. T. Mohri and T. Ikegami: Diffusion in Ordered Alloys, ed. B. Fultz, The Minerals, Metals and Materials Society, Warrendale, 1993, pp. 79–90.

  61. T. Mohri: Solid-Solid Phase Transformations, ed. W.C. Johnson, The Minerals, Metals & Materials Society, Warrendale, 1994, pp. 53–74.

  62. T. Mohri, T. Nakahara, S. Takizawa and T. Suzuki: J. Alloys and Compound, 1995, 220, pp. 1-7.

    Article  Google Scholar 

  63. T. Mohri: Stability of Materials, ed. A. Gonis, Plenum Press, New York, 1996, pp. 205–10.

  64. T. Mohri, Y. Ichikawa, T. Nakahara and T. Suzuki: Theory and Applications of the Cluster Variation and Path Probability Methods, ed. J.L.Moran-Lopez, Plenum Press, New York, 1996, pp. 37–51.

  65. T. Mohri: Properties of Complex Inorganic Solids, ed. A. Gonis, Plenum Press, New York, 1997, pp. 83–94.

  66. T. Mohri, C-S. Oh, S.Takizawa and T. Suzuki: Intermetallics: 1996, 4, pp. S3-S10.

    Article  Google Scholar 

  67. T. Mohri, Y. Ichikawa and T. Suzuki: J. Alloys and Compounds, 1997, 247, pp. 98-103.

    Article  Google Scholar 

  68. T. Mohri and S. Miyagishima: Mat. Trans. JIM, 1998, 39, pp. 154-158.

    Article  Google Scholar 

  69. T. Mohri: Z. Metallkunde, 1999, 90, pp. 71-75.

    Google Scholar 

  70. T. Mohri: Modelling Simul. Mater. Sci. Eng., 2000, 8, pp. 239–249.

    Article  Google Scholar 

  71. T. Mohri: Properties of Complex Inorganic Solid 2, ed. A. Meike, (Kluwer Academic/Plenum Publishers, 2000, pp. 123–38.

  72. J. W. Cahn and J. E. Hilliard: J. Chem. Phys., 1958, 28, pp. 258-267.

    Article  Google Scholar 

  73. D. Fan and L. Q. Chen: Acta mater., 1997, 45, pp. 3297-3310.

    Article  Google Scholar 

  74. S.M. Allen and J.W. Cahn: Acta Metal., 1979, 27, pp. 1085-1095.

    Article  Google Scholar 

  75. R. Kikuchi and J. W. Cahn: J. Phys. Chem. Solids., 1962, 23, pp. 137-151.

    Article  Google Scholar 

  76. Munekazu Ohno and Tetsuo Mohri: Materials Trans., 2006, 47, pp. 2718-2724.

    Article  Google Scholar 

  77. R. Kikuchi and A. Beldjenna: Physica, 1992, A182, pp. 617-634.

    Article  Google Scholar 

  78. Tetsuo Mohri: Computational Materials Science, 2010, 49, pp.S181-S186.

    Article  Google Scholar 

  79. A. Finel and R.Tetot: Stability of Materials, ed. A. Gonis, P.E.A. Turchi and J. Kudrnovsky, NATO ASI Series, 1995, pp. 197–203.

  80. Y. Yamada and T. Mohri: Materials Trans., 2016, 57, pp. 481-487.

    Article  Google Scholar 

  81. Y. Misumi, S. Masatsuji, R. Sahara, S. Ishii, and K. Ohno, J. Chem. Phys. 2008, vol. 128, pp. 234702-1-234702-5.

    Article  Google Scholar 

  82. R. Sahara, H. Ichikawa, H. Mizuseki, K. Ohno, H. Kubo, and Y. Kawazoe, J. Chem. Phys., 2004, vol. 120, pp. 9297-9301.

    Article  Google Scholar 

  83. N. Kiyokane and T. Mohri: Phil. Mag., 2013, 93, pp. 2316-28.

    Article  Google Scholar 

Download references

Acknowledgment

This work is partly supported by JSPS Grant-in-Aid for Scientific Research (B) 26289227. The author acknowledges Professors Y. Chen at Tohoku University and M. Ohno for their stimulating discussions and also Ms Kadowaki for the help of careful preparation of the manuscript. The author also sincerely acknowledges Professor Militzer for inviting him to PTM conference, which motivates to write this manuscript. Finally, the author is grateful to Center for Computational Materials Science at IMR, Tohoku University, for the machine time of SR16000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Mohri.

Additional information

Manuscript submitted January 14, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohri, T. Cluster Variation Method as a Theoretical Tool for the Study of Phase Transformation. Metall Mater Trans A 48, 2753–2770 (2017). https://doi.org/10.1007/s11661-017-3989-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-3989-x

Keywords

Navigation