Skip to main content
Log in

Porosity, Microstructure, and Mechanical Properties of Ti-6Al-4V Alloy Parts Fabricated by Powder Compact Forging

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ti-6Al-4V alloy powders produced using a hydrogenation–dehydrogenation process and a gas atomization process, respectively, were rapidly consolidated into near-net-shaped parts by powder compact forging. The porosity, microstructure, and tensile mechanical properties of specimens cut from regions at different distances from the side surfaces of the forged parts were examined. The regions near the side surfaces contained a fraction of pores due to the circumferential tensile strain arising during the powder compact forging process, and the porosity level decreased rapidly to zero with increasing the distance from the side surface. The forged parts had a fully lamellar structure with the α + β colony sizes and α lamella thickness changing little with the distance from the side surface. The specimens cut from the regions near the side surfaces had a lower yield strength and tensile strength. The correlation of porosity with the yield strength of the specimens suggested that the reduction of load bearing areas due to the porosity and unbonded or weakly bonded interparticle boundaries was not the only reason for the lower strength, and the stress concentration at the pores and associated with their geometry also played an important role in this. It is likely that the effect of stress concentration on yield strength reduction of the forged part increases with oxygen content. The Hall–Petch relationship of the yield strength and the average α lamella thickness suggested that the strength of the fully dense and fully consolidated forged parts was increased by oxygen solution strengthening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. F. Froes: Mater. Sci. Eng., A, 1994, vol. 184, pp. 119-133.

    Article  Google Scholar 

  2. R. Boyer: Mater. Sci. Eng., A, 1996, vol. 213, pp. 103-114.

    Article  Google Scholar 

  3. M. Niinomi: Mater. Sci. Eng., A, 1998, vol. 243, pp. 231-236.

    Article  Google Scholar 

  4. M. Niinomi: Metall. Mater. Trans. A, 2002, vol. 33, pp. 477-486.

    Article  Google Scholar 

  5. T. Saito: JOM, 2004, vol. 56, pp. 33-36.

    Article  Google Scholar 

  6. C. Elias, J. Lima, R. Valiev and M. Meyers: JOM, 2008, vol. 60, pp. 46-49.

    Article  Google Scholar 

  7. A.A. Kalam and Y.S. Rajan: India 2020: A vision for the new millennium. Westminster: Penguin UK, 2014.

    Google Scholar 

  8. M. Qian: Int. J. Powder Metall., 2010, vol. 46.

  9. W. Chen, Y. Yamamoto, W.H. Peter, M.B. Clark, S.D. Nunn, J. Kiggans, T.R. Muth, C.A. Blue, J.C. Williams and K. Akhtar: J. Alloys Compd., 2012, vol. 541, pp. 440-447.

    Article  Google Scholar 

  10. F.S. Froes: Powder Metall. Met. Ceram., 2007, vol. 46, pp. 303-310.

    Article  Google Scholar 

  11. M. Köhl, T. Habijan, M. Bram, H.P. Buchkremer, D. Stöver and M. Köller: Adv. Eng. Mater., 2009, vol. 11, pp. 959-968.

    Google Scholar 

  12. W. Yuan, J. Mei, V. Samarov, D. Seliverstov and X. Wu: J. Mater. Process. Technol., 2007, vol. 182, pp. 39-49.

    Article  Google Scholar 

  13. K. Zhang, J. Mei, N. Wain and X. Wu: Metall. Mater. Trans. A, 2010, vol. 41, pp. 1033-1045.

    Article  Google Scholar 

  14. H. Guo, Z. Zhao, C. Duan and Z. Yao: JOM, 2008, vol. 60, pp. 47-49.

    Article  Google Scholar 

  15. M.T. Jia, D.L. Zhang and B. Gabbitas: Key Eng. Mater., 2012, vol. 520, pp. 82-88.

    Article  Google Scholar 

  16. J. Qiu, Y. Liu, Y. Liu, B. Liu, B. Wang, E. Ryba and H. Tang: Mater. Des., 2012, vol. 33, pp. 213-219.

    Article  Google Scholar 

  17. J. Qiu, Y. Liu, B. Liu, Y. Liu, B. Wang, E. Ryba and H. Tang: Journal of Materials Science, 2012, vol. 47, pp. 3837-3848.

    Article  Google Scholar 

  18. M. Jia, J. Liang, D. Zhang, C. Kong and B. Gabbitas: Mater. Sci. Eng., A, 2016, vol. 655, pp. 113-121.

    Article  Google Scholar 

  19. G. Lütjering and J.C. Williams: Titanium. New York: Springer, 2003.

    Book  Google Scholar 

  20. M. Benedetti and V. Fontanari: Fatigue Fract. Eng. Mater. Struct., 2004, vol. 27, pp. 1073-1089.

    Article  Google Scholar 

  21. Z. Esen and Ş. Bor: Mater. Sci. Eng., A, 2011, vol. 528, pp. 3200-3209.

    Article  Google Scholar 

  22. J.-H. Lee, Y.-H. Kim and W.-B. Bae: J. Mater. Process. Technol., 1997, vol. 72, pp. 371-379.

    Article  Google Scholar 

  23. R. Narayanasamy and K. Pandey: J. Mater. Process. Technol., 2000, vol. 100, pp. 87-94.

    Article  Google Scholar 

  24. J.-O. Park, K.-J. Kim, D.-Y. Kang, Y.-s. Lee and Y.-H. Kim: J. Mater. Process. Technol., 2001, vol. 113, pp. 486-492.

    Article  Google Scholar 

  25. R. Dashwood and G. Schaffer: Mater. Sci. Eng., A, 2002, vol. 323, pp. 206-212.

    Article  Google Scholar 

  26. A. Ragab: Mater. Sci. Eng., A, 2002, vol. 334, pp. 114-119.

    Article  Google Scholar 

  27. M. Leonowicz, D. Derewnicka, M. Wozniak and H. Davies: J. Mater. Process. Technol., 2004, vol. 153, pp. 860-867.

    Article  Google Scholar 

  28. S. Singh, A. Jha and S. Kumar: J. Mater. Process. Technol., 2007, vol. 194, pp. 134-144.

    Article  Google Scholar 

  29. J. Das, K. Chandra, P. Misra and B. Sarma: Mater. Sci. Eng., A, 2008, vol. 479, pp. 164-170.

    Article  Google Scholar 

  30. G.R. Shaik and W. Milligan: Metall. Mater. Trans. A, 1997, vol. 28, pp. 895-904.

    Article  Google Scholar 

  31. C. Liang, M. Ma, M. Jia, S. Raynova, J. Yan and D. Zhang: Mater. Sci. Eng., A, 2014, vol. 619, pp. 290-299.

    Article  Google Scholar 

  32. C. Liang, M. Ma, M. Jia, S. Raynova, J. Yan and D. Zhang: Metall. Mater. Trans. A, 2015, vol. 46, pp. 5095-5102.

    Article  Google Scholar 

  33. H.A. Kuhn and B.L. Ferguson: Powder forging. Metal Powder Industries Federation: Princeton, NJ, 1990.

    Google Scholar 

  34. H. Dong and X. Li: Materials Science and Engineering: A, 2000, vol. 280, pp. 303-310.

    Article  Google Scholar 

  35. T. Griffiths, R. Davies and M. Bassett: Powder Metallurgy, 1979, pp. 119–23.

  36. R. Rice: Journal of Materials Science, 1993, vol. 28, pp. 2187-2190.

    Article  Google Scholar 

  37. H. Kuhn: Powder metallurgy processing: the techniques and analyses. New York: Elsevier, 2012.

    Google Scholar 

  38. M. Yan, W. Xu, M. Dargusch, H. Tang, M. Brandt and M. Qian: Powder Metallurgy, 2014, vol. 57, pp. 251-257.

    Article  Google Scholar 

  39. R. Haynes: Powder Metall., 1977, vol. 20, pp. 17-20.

    Article  Google Scholar 

  40. Q. Xu, B. Gabbitas and S. Matthews: Mater. Sci. Eng., A, 2013, vol. 587, pp. 123-131.

    Article  Google Scholar 

  41. S. Semiatin and T. Bieler: Acta materialia, 2001, vol. 49, pp. 3565-3573.

    Article  Google Scholar 

  42. D. Kohn and P. Ducheyne: Journal of Materials Science, 1991, vol. 26, pp. 328-334.

    Article  Google Scholar 

  43. D.-G. Lee, S. Lee, C.S. Lee and S. Hur: Metall. Mater. Trans. A, 2003, vol. 34, pp. 2541-2548.

    Article  Google Scholar 

  44. I. Sen: J. Phys.: Conf. Ser., 2010, vol. 240, pp. 1-4.

    Google Scholar 

  45. J. Sieniawski, W. Ziaja, K. Kubiak and M. Motyka, In Titanium Alloys-Advances in Properties Control. Rijeka: InTech, 2013, pp 69–80.

    Book  Google Scholar 

  46. C. Leyens and M. Peters: Titanium and titanium alloys. New York: Wiley, 2003.

    Book  Google Scholar 

  47. J.-M. Oh, B.-G. Lee, S.-W. Cho, S.-W. Lee, G.-S. Choi and J.-W. Lim: Met. Mater. Int., 2011, vol. 17, pp. 733-736.

    Article  Google Scholar 

Download references

Acknowledgments

The work presented in this paper was financially supported by the Ministry of Business, Innovation and Employment, New Zealand (Contract No. UOWX0802) and the National Natural Science Foundation, China (Project Approval No.: 51271115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deliang Zhang.

Additional information

Manuscript submitted July 15, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, M., Zhang, D., Liang, J. et al. Porosity, Microstructure, and Mechanical Properties of Ti-6Al-4V Alloy Parts Fabricated by Powder Compact Forging. Metall Mater Trans A 48, 2015–2029 (2017). https://doi.org/10.1007/s11661-017-3965-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-3965-5

Keywords

Navigation