Skip to main content
Log in

Effect of Microstructures on Fatigue Crack Growth Behavior of Friction Stir Processed NiAl Bronze Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract:

Friction stir processed (FSPed) NAB alloy exhibits inhomogeneous microstructures that can be divided into three subregions from the top surface to the bottom according to α phase morphologies: Widmanstatten α subregion, banded α colonies, and stream-like α colonies. In this study, a constant stress intensity range (ΔK) was used for each sample to study the effect of microstructures on the fatigue crack growth rate (FCGR) of FSPed NAB alloy. The results show that α phase in banded and stream-like α colonies experiences completely dynamic recrystallization and forms equiaxed α grains during FSP. The FCGR of FSPed NAB alloy continuously decreases from the top surface to the bottom. In the subregion with stream-like α colonies, the alloy containing a higher content of equiaxed α grains and fine κ iv phase, and less retained β (β′) phase exhibits the best FCG resistance. The equiaxed α grains deflect the main crack and increase crack tortuosity effect, which make a main contribution to FCG resistance of FSPed NAB alloy, while martensite β′ phase produced during FSP accelerates its fatigue crack growth. Compared to matrix alloy, FSPed NAB alloy exhibits better FCG resistance only at high ΔK levels. At low ΔK levels, the crack deflection effect caused by coarser κ phase in the matrix alloy obviously improves its FCG resistance. With the increasing ΔK, the aforementioned crack deflection effect gradually diminishes and fatigue crack prefers to propagate in a flat way, resulting in higher FCGR of matrix alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Z. Wu, Y.F. Cheng, L. Liu, W.J. Lv, W.B. Hu: Corros. Sci., 2015, vol. 98, pp. 260-270.

    Article  Google Scholar 

  2. K. Oh-ishi and T.R. McNelley: Metall. Mater. Trans A., 2005, vol. 36A, pp. 1575-1585.

    Article  Google Scholar 

  3. D.R. Ni, B.L. Xiao, Z.Y. Ma, Y.X. Qiao, Y.G. Zheng: Corros. Sci., 2010, vol. 52(5), pp. 1610-1617.

    Article  Google Scholar 

  4. A. Jahanafrooz, F. Hasan, G.W. Lorrmer and N. Ridley: Metall. Mater. Trans A., 1982, vol. 34A, pp. 1951-1956.

    Google Scholar 

  5. Q.N. Song, Y.G. Zheng, D.R. Ni, Z.Y. Ma: Corros. Sci., 2014, vol. 92, pp. 95-103.

    Article  Google Scholar 

  6. X.Y. Xu, H. Wang, Y.T. Lv, W.J. Lu, G.A. Sun: Metall. Mater. Trans. A., 2016, vol. 47(5), pp. 2081-2092.

    Article  Google Scholar 

  7. S. Fonlupt, B. Bayle, D. Delafosse, J.L. Heuze: Corros. Sci., 2005, vol. 47(11), pp. 2792-2806.

    Article  Google Scholar 

  8. X.Y. Xu, Y.T. Lv, M. Hu, D. Xiong, L.F. Zhang, L.Q. Wang, W.J. Lu: Int. J. Fatigue, 2016, vol. 82, pp. 579-587.

    Article  Google Scholar 

  9. A. Chakrabarti, A. Sarkar, T. Saravanan, A. Nagesha, R. Sandhya and T. Jayakumar: Procedia Eng., 2014, vol. 86, pp.103-110.

    Article  Google Scholar 

  10. Z.B. Qin, Z. Wu, X.S. Zen, Q. Luo, L. Liu, W.J. Lu, W.B. Hu: Corrosion, 2016, vol. 72(10), pp. 1269-1280.

    Article  Google Scholar 

  11. C.H. Tang, F.T. Cheng, H.C. Man: Surf. Coat. Tech., 2004, vol. 182, pp. 300–307.

    Article  Google Scholar 

  12. C.H. Tang, F.T. Cheng, H.C. Man: Mater. Sci. Eng. A, 2004, vol. 373, pp. 195-203.

    Article  Google Scholar 

  13. J.Q. Su, S. Swaminathan, S.K. Menon, T.R. McNelley: Metall. Mater. Trans. A, 2011, vol. 42(8), pp. 2420-2430.

    Article  Google Scholar 

  14. K. Oh-ishi and T.R. McNelley: Metall. Mater. Trans A, 2004. Vol. 35A pp. 2951-2960.

    Article  Google Scholar 

  15. S. Hanke, A. Fischer, M. Beyer, J. D. Santos: Wear, 2011, vol. 273(1), pp. 32-37.

    Article  Google Scholar 

  16. R.S. Mishra, Z.Y. Ma: Mater. Sci. Eng. R, 2005, vol. 50(1-2), pp. 1-78.

    Article  Google Scholar 

  17. W.A. Palko, R.S. Fielder, P.F. Young: Mater. Sci. Forum, 2003, vol. 426-432, pp. 2909-2914.

    Article  Google Scholar 

  18. D.R. Ni, P. Xue, Z.Y. Ma: Metall. Mater. Trans A, 2011, vol. 42(8). pp. 2125-2135.

    Article  Google Scholar 

  19. D.R. Ni, P. Xue, D. Wang, B.L. Xiao, Z.Y. Ma: Mater. Sci. Eng. A, 2009, vol. 524(1-2), pp. 119-128.

    Article  Google Scholar 

  20. S. Swaminathan, K. Oh-Ishi, A.P. Zhilyaev, C.B. Fuller, B. London, M.W. Mahoney, T.R. McNelley: Metall. Mater. Trans A, 2009, vol. 1(3), pp. 631-640.

    Google Scholar 

  21. R. Nandan, T. Debroy, H. Bhadeshia: Prog. Mater. Sci., 2008, vol. 53(6). pp. 980-1023.

    Article  Google Scholar 

  22. Y.T. Lv, L.Q. Wang, X.Y. Xu, W.J. Lu: Metals, 2015, vol. 5(3). pp. 1695-1703.

    Article  Google Scholar 

  23. Y.T. Lv, L.Q. Wang, Y.F. Han, X.Y. Xu, W.J. Lu: Mater. Sci. Eng. A, 2015, vol. 643, pp. 17-24.

    Article  Google Scholar 

  24. Y.T. Lv, L.Q. Wang, X.Y. Xu, Y.F. Han, W.J. Lu: Mater. Trans., 2015, vol. 56(9), pp. 1523-1529.

    Article  Google Scholar 

  25. Y.L. Wang, Q.L. Pan, L.L. Wei, B. Li, Y. Wang: Mater. Des., (2014) vol. 55, pp. 857-863.

    Article  Google Scholar 

  26. J.Z. Dong, F.G. Li, C.P. Wang: Mater. Sci. Eng. A, 2013, vol. 580, pp. 105-113.

    Article  Google Scholar 

  27. Y.T. Lv, M. Hu, L.Q. Wang, X.Y. Xu, Y.F. Han, W.J. Lu: J. Mater. Res., 2015, vol. 30(20), pp. 3041-3048.

    Article  Google Scholar 

  28. A.J. F. Hansan, G.W. Lorimer and N. Ridley: Metall. Mater. Trans A, 1982. vol. 13A, pp. 1337-1345.

    Article  Google Scholar 

  29. L.P. Borrego, J.M. Costa, S. Silva, J.M. Ferreira: Inter. J. Fatigue, 2004, vol. 26(12), pp. 1321-1331.

    Article  Google Scholar 

  30. X.H. Shi, W.D. Zeng, C.L. Shi, H.J. Wang, Z.Q. Jia: Mater. Sci. Eng. A, (2015) vol. 621, pp. 252-258.

    Article  Google Scholar 

  31. X.H. Shi, W.D. Zeng, C.L. Shi, H.J. Wang, Z.Q. Jia: Mater. Sci. Eng. A, 2015, vol. 621, pp. 143-148.

    Article  Google Scholar 

  32. G. Lütjering, J. Albrecht, C. Sauer, T. Krull: Mater. Sci. Eng. A, 2007, vol. 468-470, pp. 201-209.

    Article  Google Scholar 

  33. X.H. Shi, W.D. Zeng, S.K. Xue, Z.Q Jia: J. Alloy. Compd, 2015, vol. 631, pp. 340-349.

    Article  Google Scholar 

  34. P.S. Prevey, D.J. Hornbach, D.N. Jayaraman: Mater. Sci. Forum, 2007, vol. 539-543, pp. 3807-3813.

    Article  Google Scholar 

  35. . Yang, B.L. Xiao, D. Wang, Z.Y. Ma: Mater. Sci. Eng. A, 2010, vol. 527, pp. 708-714.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this research was jointly provided by 973 Program under Grant No. 2014CB046701, the National Science Foundation under Grant Nos. 51302168 and 51674167, the Shanghai Pujiang Program under Grant No. 15PJD017, and the Science and Technology Planning Project of Jiujiang City.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liqiang Wang or Weijie Lu.

Additional information

Manuscript submitted October 13, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Ding, Y., Han, Y. et al. Effect of Microstructures on Fatigue Crack Growth Behavior of Friction Stir Processed NiAl Bronze Alloy. Metall Mater Trans A 48, 1121–1132 (2017). https://doi.org/10.1007/s11661-016-3937-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3937-1

Keywords

Navigation