Skip to main content
Log in

Fabrication of High-Porosity Lotus-Type Porous Aluminum in Vacuum

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Lotus-type porous aluminums with porosities from 10 to 26 pct were fabricated with the Bridgman-type directional solidification method (Gasar). A vacuum atmosphere is critical to obtain high-porosity lotus-type porous aluminum by the Gasar process. The lotus-type porous aluminum was directionally solidified under a pure hydrogen pressure of 0.2 to 16 kPa. The influence of hydrogen pressure on the porosity and pore size in vacuum was investigated. The porosity and pore size increase with decreasing hydrogen pressure, but there exists a maximum porosity at some critical hydrogen pressure. Since a low hydrogen pressure is adopted, the effect of capillary pressure and hydrostatic pressure on the porosity becomes important. With the decreasing of hydrogen pressure, the influence of hydrostatic pressure and capillary pressure on porosity becomes stronger and stronger. The influence of melt height, which is proportional hydrostatic pressure, on porosity and pore size was investigated. The calculated porosities considering capillary pressure and hydrostatic pressure are in good agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. [1]. V. Shapovalov: MRS Bull., 1994, vol. 19, pp. 24–28.

    Article  Google Scholar 

  2. [2]. V. Shapovalov and L.Boyko: Adv. Eng. Mater., 2004, vol. 6, pp. 407-10

    Article  Google Scholar 

  3. [3]. S.K. Hyun, K. Murakami, and H. Nakajima: Mater. Sci. Eng., A, 2001, vol.299, pp. 241-48.

    Article  Google Scholar 

  4. [4].Y. Liu, Y. Li, J. Wan, and H. Zhang: Metall. Mater. Trans. A, 2006. vol. 37A, pp. 2871–78.

    Article  Google Scholar 

  5. [5]. L. Drenchev, J. Sobczak, S. Malinov, and W. Sha: Mater. Sci.Technol., 2006, vol. 22, pp. 1135-47.

    Article  Google Scholar 

  6. [6]. L. Drenchev, J. Sobczak, W. Sha and S. Malinov: J. Mater. Sci., 2005, vol.40, pp.2525-29.

    Article  Google Scholar 

  7. [7]. H. Zhang, Y. Li, and Y. Liu: Acta Metall. Sin., 2007, vol. 43, pp. 113–18.

    Google Scholar 

  8. [8]. H. Zhang, Y. Li, and Y. Liu: Acta Metall. Sin., 2007, vol. 43, pp. 11–16.

    Google Scholar 

  9. [9]. J.S. Park, S.K. Hyun, S. Suzuki, and H. Nakajima: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 406–14.

    Article  Google Scholar 

  10. [10]. S. Suzuki, T. B. Kim, and H. Nakajima: J. Phys: Conf. Ser., 2009, vol.165, p. 012068.

    Google Scholar 

  11. [11]. T. B. Kim, M. Tane, S. Suzuki, and H. Nakajima: Mater. Trans, 2010, vol. 51, pp. 1871-77.

    Article  Google Scholar 

  12. [12]. T. B. Kim, S. Suzuki, and H. Nakajima: Mater Trans, 2010, vol. 51, pp. 496-502.

    Article  Google Scholar 

  13. [13]. T. Ide, Y. Iio, and H. Nakajima: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 5140-52.

    Article  Google Scholar 

  14. [14]. J.S. Park, S.K. Hyun, S. Suzuki, and H. Nakajima: Acta Mater., 2007, vol. 55, pp. 5646–54.

    Article  Google Scholar 

  15. [15]. H. Nakajima, and T. Ide: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 390-94.

    Article  Google Scholar 

  16. [16]. S.Y. Kim, J.S. Park, and H. Nakajima: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 937-42.

    Article  Google Scholar 

  17. [17]. J.S. Park, and H. Nakajima: J. Phys: Conf. Ser., 2009, vol.165, p. 012066.

    Google Scholar 

  18. [18]. D. E. J. Talbot, and P. N. Anyalebechi: Mater. Sci. Technol., 1988, vol.4, pp. 1-4.

    Article  Google Scholar 

  19. [19]. B.J. Keene: Int. Mater. Rev., 1993, vol. 38(4), pp. 157-92.

    Article  Google Scholar 

  20. [20]. J.P. Anson, R.A.L. Drew and J.E. Gruzleski: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 1027-32.

    Article  Google Scholar 

  21. [21]. G.S. Vinod Kumar, M. Mukherjee, F. Garcia-Moreno, and J. Banhart: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 419-26.

    Article  Google Scholar 

  22. [22]. H. Zhang, Y. Li, and Y. Liu: Acta Metall. Sin., 2006, vol. 42, pp. 1171–76.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundations No. 51371104, International Science and Technology Cooperation Program of China No. 2013DFR50330.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxiang Li.

Additional information

Manuscript submitted September 2, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, Y. & He, Y. Fabrication of High-Porosity Lotus-Type Porous Aluminum in Vacuum. Metall Mater Trans A 48, 1264–1272 (2017). https://doi.org/10.1007/s11661-016-3930-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3930-8

Keywords

Navigation