Advertisement

Metallurgical and Materials Transactions A

, Volume 48, Issue 3, pp 1204–1215 | Cite as

Structural Characteristics and In Vitro Biodegradation of a Novel Zn-Li Alloy Prepared by Induction Melting and Hot Rolling

  • Shan Zhao
  • Cameron T. McNamara
  • Patrick K. Bowen
  • Nicholas Verhun
  • Jacob P. Braykovich
  • Jeremy Goldman
  • Jaroslaw W. DrelichEmail author
Article

Abstract

Zinc shows great promise as a bioabsorbable metal; however, the low tensile strength of pure zinc limits its application for endovascular stent purposes. In this study, a new Zn-xLi alloy (with x = 2, 4, 6 at. pct) was prepared by induction melting in an argon atmosphere and processed through hot rolling. Structures of the formulated binary alloys were characterized by X-ray diffraction and optical microscopy. Mechanical testing showed that the incorporation of Li into Zn increased ultimate tensile strength from <120 MPa (pure Zn) to >560 MPa (x = 6 at. pct). In vitro corrosion behavior was evaluated by immersion tests in simulated body fluid. The Zn-2Li and Zn-4Li corrosion study demonstrated that corrosion rates and products resemble those observed for pure Zn in vivo, and in addition, the Zn-4Li alloy exhibits higher resistance to corrosion as compared to Zn-2Li. The findings herein encourage further exploration of Zn-Li systems for structural use in biomedical vascular support applications with the ultimate goal of simplifying stent procedures, thereby reducing stent-related complications.

Keywords

Ultimate Tensile Strength Simulated Body Fluid Inductively Couple Plasma Optical Emission Spectrometry Simulated Body Fluid Solution Hypoeutectic Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

U.S. National Institute of Health—National Heart, Lung, and Blood Institute (Grant #1R15HL129199-01) and U.S. National Institute of Health—National Institute of Biomedical Imaging and Bioengineering (Grant #5R21 EB 019118-02) are acknowledged for funding this work. The authors thank Paul Fraley for tensile testing. The authors also thank the staff of the Applied Chemical and Morphological Analysis Laboratory for assisting with the sample preparation for electron imaging.

References

  1. 1.
    A. Farb, Circulation 2002, vol. 105, pp. 2974–80.CrossRefGoogle Scholar
  2. 2.
    S. Cook, P. Wenaweser, M. Togni, M. Billinger, C. Morger, C. Seiler, R. Vogel, O. Hess, B. Meier and S. Windecker, Circulation 2007, vol. 115, pp. 2426–34.CrossRefGoogle Scholar
  3. 3.
    A. Colombo and E. Karvouni, Circulation 2000, vol. 102, pp. 371–73.CrossRefGoogle Scholar
  4. 4.
    P. Erne, M. Schier and T. J. Resink, Cardiovasc Intervent Radiol 2006, vol. 29, pp. 11–6CrossRefGoogle Scholar
  5. 5.
    M. Peuster, P. Wohlsein, M. Brugmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer and G. Hausdorf, Heart 2001, vol. 86, pp. 563–69CrossRefGoogle Scholar
  6. 6.
    Waksman, R.O.N., Pakala, R., Baffour, R., Seabron, R., Hellinga, D. and Tio, F.O, J Interv Cardiol 2008, vol. 21, pp. 15–20CrossRefGoogle Scholar
  7. 7.
    P. K. Bowen, E.R. Shearier, S. Zhao, R.J. Guillory Ii, F. Zhao, J. Goldman and J. Drelich, Adv. Healthc. Mater. 2016, vol. 05 pp. 1121–40.CrossRefGoogle Scholar
  8. 8.
    S. Nishio, K. Kosuga, K. Igaki, M. Okada, E. Kyo, T. Tsuji, E. Takeuchi, Y. Inuzuka, S. Takeda, T. Hata, Y. Takeuchi, Y. Kawada, T. Harita, J. Seki, S. Akamatsu, S. Hasegawa, N. Bruining, S. Brugaletta, S. de Winter, T. Muramatsu, Y. Onuma, P.W. Serruys, S. Ikeguchi, Circulation 2012, vol. 125, pp. 2343–53CrossRefGoogle Scholar
  9. 9.
    M. Moravej, F. Prima, M. Fiset and D. Mantovani, Acta Biomaterialia 2010, vol. 6, pp. 1726–35CrossRefGoogle Scholar
  10. 10.
    M. Moravej H. Hermawan, D. Dubé, M. Fiset, D. Mantovani, Advanced Materials Research 2006, vol. 15–17, pp. 113–18.Google Scholar
  11. 11.
    Lei Yang and Erlin Zhang, Mater. Sci. Eng. C 2009, vol. 29, pp. 1691–96.CrossRefGoogle Scholar
  12. 12.
    R. Waksman, R. Pakala, P.K. Kuchulakanti, R. Baffour, D. Hellinga, R. Seabron, F.O. Tio, E. Wittchow, S. Hartwig, C. Harder, R. Rohde, B. Heublein, A. Andreae, K.H. Waldmann, A. Haverich, Catheter Cardiovasc Interv. 2006, vol. 68, pp. 607–17CrossRefGoogle Scholar
  13. 13.
    Haim Tapiero and Kenneth D. Tew, Biomed. Pharmacother. 2003, vol. 57, pp. 399–411.CrossRefGoogle Scholar
  14. 14.
    P. K. Bowen, J. Drelich and J. Goldman, Adv Mater 2013, vol. 25, pp. 2577–82.CrossRefGoogle Scholar
  15. 15.
    R. J. Werkhoven, W. H. Sillekens and J. B. J. M. van Lieshout, In Magnesium Technology 2011, John Wiley & Sons, Inc., New York, 2011, pp 419–24.Google Scholar
  16. 16.
    D. Vojtech, J. Kubasek, J. Serak and P. Novak, Acta Biomater 2011, vol. 7, pp. 3515–22CrossRefGoogle Scholar
  17. 17.
    J.-M. Seitz, M. Durisin, J. Goldman, and J.W. Drelich, Adv. Health. Mater. 2015, vol. 4, pp. 1915-36.CrossRefGoogle Scholar
  18. 18.
    Zhang, X., Yuan, G., Wang, Z., Mater. Lett. 2012, vol. 74, pp. 128–31CrossRefGoogle Scholar
  19. 19.
    Feng Kang, Jin Qiang Liu, Jing Tao Wang and Xiang Zhao, Adv. Eng. Mater. 2010, vol. 12, pp. 730–34.CrossRefGoogle Scholar
  20. 20.
    A.D. Pelton, Journal of Phase Equilibria 1991, vol. 12, pp. 42–45.CrossRefGoogle Scholar
  21. 21.
    G. N. Schrauzer, J Am Coll Nutr 2002, vol. 21, pp. 14–21CrossRefGoogle Scholar
  22. 22.
    Food and Nutrition Board Institute of Medicine, Washington, DC: National Academy Press 2001.Google Scholar
  23. 23.
    Liping Xu, Guoning Yu, Erlin Zhang, Feng Pan and Ke Yang, J. Biomed. Mater. Res., Part A 2007, vol. 83A, pp. 703–11.CrossRefGoogle Scholar
  24. 24.
    F. Witte, I. Abeln, E. Switzer, V. Kaese, A. Meyer-Lindenberg and H. Windhagen, J Biomed Mater Res A 2008, vol. 86, pp. 1041–47.CrossRefGoogle Scholar
  25. 25.
    M. Thomann, Ch Krause, D. Bormann, N. von der Höh, H. Windhagen and A. Meyer-Lindenberg, Materialwissenschaft und Werkstofftechnik 2009, vol. 40, pp. 82–87CrossRefGoogle Scholar
  26. 26.
    F. Witte, J. Fischer, J. Nellesen, C. Vogt, J. Vogt, T. Donath and F. Beckmann, Acta Biomater 2010, vol. 6, pp. 1792–99.CrossRefGoogle Scholar
  27. 27.
    Nina von der Höh Annett Krause, Dirk Bormann, Christian Krause, Friedrich-Willhelm Bach, Henning Windhagen, Andrea Meyer-Lindenberg, J. Mater. Sci. 2010, vol. 45, pp. 624–32.CrossRefGoogle Scholar
  28. 28.
    V. Pavlyuk, I. Chumak, L. Akselrud, S. Lidin and H. Ehrenberg, Acta Crystallogr B Struct Sci Cryst Eng Mater. 2014, vol. 70(Pt 2), pp. 212–17.CrossRefGoogle Scholar
  29. 29.
    Jiqiang Wang, Paul King and R. A. Huggins, Solid State Ionics 1986, vol. 20, pp. 185–89.CrossRefGoogle Scholar
  30. 30.
    Marie-Pierre Bichat, Jean-Louis Pascal, Frédéric Gillot and Frédéric Favier, Chem. Mater. 2005, vol. 17, pp. 6761–71.CrossRefGoogle Scholar
  31. 31.
    E. Zintl and A. Schneider, Z. Elektrochem. Angew. Phys. Chem. 1935, vol. 41, pp. 764–67Google Scholar
  32. 32.
    H. Schönemann and H.-U. Schuster, Rev. Chim. Miner. 1976, vol. 13, pp. 32–40.Google Scholar
  33. 33.
    V. Pavlyuk, I. Chumak and H. Ehrenberg, Acta Crystallogr. Sect. B 2012, vol. 68, pp. 34–39.CrossRefGoogle Scholar
  34. 34.
    T. Kokubo, S. Kushitani H Fau - Sakka, T. Sakka S Fau - Kitsugi, T. Kitsugi T Fau - Yamamuro and T. Yamamuro, J Biomed Mater Res. 1990, vol. 24, pp. 721–34.CrossRefGoogle Scholar
  35. 35.
    Standard Practice for Laboratory Immersion Corrosion Testing of Metals ASTM G31-72, (ASTM International: West Conshohocken, PA, 2004).Google Scholar
  36. 36.
    Q Wang, L.L Tan, W.L. Xu, B.C. Zhang and K. Yang, Mater. Sci. Eng. B 2011, vol. 176, pp. 1718–26.CrossRefGoogle Scholar
  37. 37.
    Frank Witte, Jens Fischer, Jens Nellesen, Horst-Artur Crostack, Volker Kaese, Alexander Pisch, Felix Beckmann and Henning Windhagen, Biomaterials 2006, vol. 27, pp. 1013–18.CrossRefGoogle Scholar
  38. 38.
    L. Yang and E.L. Zhang, Mater. Sci. Eng. C 2009, vol. 29, pp. 1691–1696.CrossRefGoogle Scholar
  39. 39.
    J. A. Helson and H. J. Breme: Metals as Biomaterials. Wiley, New York, 1998, pp 101–51Google Scholar
  40. 40.
    M. A. Khan, R. L. Williams and D. F. Williams, Biomaterials. 1999, vol. 20, pp. 631–37.CrossRefGoogle Scholar
  41. 41.
    Pascal J L Bichat M P, Gillot F, Favier F. , Chem. Mater. 2005, vol. 17, pp. 6761-6771.CrossRefGoogle Scholar
  42. 42.
    Denny A. Jones, Principles and prevention of corrosion (2nd Edition) 1996.Google Scholar
  43. 43.
    P. K. Bowen, J. Drelich and J. Goldman, Acta Biomater. 2014, vol. 10, pp. 1475–83.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Shan Zhao
    • 1
  • Cameron T. McNamara
    • 1
  • Patrick K. Bowen
    • 1
  • Nicholas Verhun
    • 1
  • Jacob P. Braykovich
    • 1
  • Jeremy Goldman
    • 2
  • Jaroslaw W. Drelich
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringMichigan Technological UniversityHoughtonUSA
  2. 2.Department of Biomedical EngineeringMichigan Technological UniversityHoughtonUSA

Personalised recommendations