Skip to main content
Log in

Development of Microstructure and Crystallographic Texture in a Double-Sided Friction Stir Welded Microalloyed Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The evolution of microstructure and crystallographic texture has been investigated in double-sided friction stir welded microalloyed steel, using electron backscatter diffraction (EBSD). The microstructure analyses show that the center of stirred zone reached a temperature between Ac1 and Ac3 during FSW, resulting in a dual-phase austenitic/ ferritic microstructure. The temperatures in the thermo-mechanically affected zone and the overlapped area between the first and second weld pass did not exceed the Ac1. The shear generated by the rotation probe occurs in austenitic/ferritic phase field where the austenite portion of the microstructure is transformed to a bainitic ferrite, on cooling. Analysis of crystallographic textures with regard to shear flow lines generated by the probe tool shows the dominance of simple shear components across the whole weld. The austenite texture at Ac1 - Ac3 is dominated by the B\( \left\{ {1\bar{1}2} \right\}\langle 110\rangle \) and \( \bar{B} \) \( \left\{ {\bar{1}1\bar{2}} \right\}\langle \bar{1}\bar{1}0\rangle \) simple shear texture components, where the bainite phase textures formed on cooling were inherited from the shear textures of the austenite phase with relatively strong variant selection. The ferrite portion of the stirred zone and the ferrites in the thermo-mechanically affected zones and the overlapped area underwent shear deformation with textures dominated by the D1 \( \left\{ {\bar{1}\bar{1}2} \right\}\langle 111\rangle \) and D2 \( \left\{ {11\bar{2}} \right\}\langle 111\rangle \) simple shear texture components. The formation of ultrafine equiaxed ferrite with submicron grain size has been observed in the overlapped area between the first and second weld pass. This is due to continuous dynamic strain-induced recrystallization as a result of simultaneous severe shear deformation and drastic undercooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, C.J. Dawes: International Patent application no. PCT/GB92/02203 and GB Patent application No. 9125978·8 and US Patent application no. 5,460,317, 1991.

  2. 2. W.M. Thomas, C.J. Dawes, Weld 1996, vol. 75, pp. 41 - 45.

    Google Scholar 

  3. 3. G. Cam, Int. Mater. Rev. 2011, vol. 56, pp. 1 - 48.

    Article  Google Scholar 

  4. 4. J.M. Root, D.P. Field, T.W. Nelson, Metall. Mater. Trans. A 2009, vol. 40, pp. 2109-2014.

    Article  Google Scholar 

  5. 5. Y. S. Sato, T. W. Nelson, C. J. Sterling, Acta Mater. 2005, vol. 53, pp. 637 - 645.

    Article  Google Scholar 

  6. 6. S. Mironov, Y. S. Sato, H. Kokawa, H. Inoue, S.Tsuge Acta Mater. 2011, vol. 59, pp. 5472-5481.

    Article  Google Scholar 

  7. 7. T. J. Lienert, W. L. Stellwag, B. B. Grimmett, R. W. Warke, Supplement Weld. J 2003, vol. 82, pp. 1s - 9s.

    Article  Google Scholar 

  8. 8. M. Gosh, K. Kumar, R. S. Mishra, Scripta Mater. 2010, vol. 63, pp. 851 - 854.

    Article  Google Scholar 

  9. 9. J. Young, D. P. Field, T. W. Nelson, Metall. Mater. Trans. A 2013, vol. 44, pp. 3167 - 3172.

    Article  Google Scholar 

  10. 10. M. Jafarzadegan, A. Abdollah-zadeh, A. H. Feng, T. Saeid, J. Shen, H. Assadi, J. Mater. Sci. Technol. 2013, vol. 29, pp. 367 - 372.

    Article  Google Scholar 

  11. 11. S. J. Barnes, A. Steuwer, S. Mahawish, R. Johnson, P. J. Withers, Mater. Sci. Eng., A 2008, vol. 492, pp. 35 - 44.

    Article  Google Scholar 

  12. 12. P.J. Konol, J.A. Mathers, R. Johnson, J.R. Pickens, J. Ship Prod. 2003, vol. 19, pp. 159 - 164.

    Google Scholar 

  13. N.A. McPherson, A.M. Galloway, S.R. Cater, and M.M. Osman: In 19th Int.Conf. Trends in Welding Research, (2013), pp. 284–290.

  14. G.P. Mercier and M. Reik: Concurrent Technologies Corporation 2000.

  15. 15. P. A. Manohar, M. Ferry, T. Chandra, ISIJ Int. 1998, vol. 38, pp. 913 - 924.

    Article  Google Scholar 

  16. 16. S. F. Medina, A. Quispe, M. Gomez, Mater. Sci. Forum 2012, vol. 706, pp. 2176-2180.

    Article  Google Scholar 

  17. 17. S. Vervynckt, K. Verbeken, B. Lopez, J. J. Jonas, Int. Mater. Rev. 2012, vol. 57, pp. 187 - 207.

    Article  Google Scholar 

  18. T.N. Baker and N.A. McPherson: Mater. Sci. Technol. 2016 (in press).

  19. 19. P. L. Threadgill, Sci. Technol. Weld. Joining 2007, vol. 12, pp. 357 - 360.

    Article  Google Scholar 

  20. 20. A. Toumpis, A. Galloway, S. Cater, N. McPherson, Mater. Des. 2014, vol. 62, pp. 64-75.

    Article  Google Scholar 

  21. 21. S. Mironov, Y. S. Sato, H. Kokawa, Acta Mater. 2008, vol. 56, pp. 2602-2614.

    Article  Google Scholar 

  22. 22. H. H. Cho, H. N. Han, S. T. Hong, J. H. Park, Y. J. Kwon, S. H. Kim, R. J. Steel, Mater. Sci. Eng., A 2011, vol. 528, pp. 2889-2894.

    Article  Google Scholar 

  23. D. P. Field, T. W. Nelson, Y. Hovanski, K. V. Jata, Metall. Mater. Trans. A 2001, vol. 32, pp. 2869-2877.

    Article  Google Scholar 

  24. Y. S. Sato, H. Kokawa, K. Ikeda, M. Enomoto, S. Jogan, T. Hashimoto, Metall. Mater. Trans. A 2001, vol. 32, pp. 941–948.

    Article  Google Scholar 

  25. 25. M. M. Z. Ahmed, B. P. Wynne, W. M. Rainforth, P. L. Threadgill, Scripta Mater. 2008, vol. 59, pp. 507 - 510.

    Article  Google Scholar 

  26. B.D. Nelson: Using Design of Experiments and Electron Backscatter Diffraction to Model Extended Plasticity Mechanisms in Friction Stir Welded AISI 304L Stainless Steel (Brigham Young University, 2010). All Theses and Dissertations. Paper 2582.

  27. 27. H. H. Cho, S. H. Kang, S. H. Kim, K. H. Oh, H. J. Kim, W. S. Chang, H. N. Han, Mater. Des. 2012, vol. 34, pp. 258-267.

    Article  Google Scholar 

  28. 28. P. Baillie, S. W. Campbell, A. M. Galloway, S. R. Cater, N. A. McPherson, International Journal of Chemical, Nuclear, Metallurgical and Materials Engineering 2014, vol. 8, pp. 651 - 655.

    Google Scholar 

  29. M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton and L. Suominen: NPL Measurement Good Practice Guide No. 52, 2005.

  30. 30. D. Raabe, K. Lüucke, Mater. Sci. Technol. 1993, vol. 9, p. 302.

    Article  Google Scholar 

  31. 31. M. Ghosh, K. Kumar, R. S. Mishra, Mater. Sci. Eng., A 2011, vol. 528, pp. 8111-8119.

    Article  Google Scholar 

  32. 32. M. Matsushita, Y. Kitani, R. Ikeda, M. Ono, H. Fuji, Y. D. Chung, Sci. Technol. Weld. Joining 2011, vol. 16, pp. 181-187.

    Article  Google Scholar 

  33. 33. L. Gavard, H. K. D. H. Bhadeshia, D. J. C. Mackay, S. Suzuki, Mater. Sci. Technol. 1996, vol. 12, pp. 453-463.

    Article  Google Scholar 

  34. F. Borrato, R. Barbosa, S. Yue and J.J. Jonas: In Thermec, 1988, pp. 383–90.

  35. 35. J. R. Yang, H. K. D. H. Bhadeshia, Adv Weld Technol Sci 1987, vol. 1, pp. 187-191.

    Google Scholar 

  36. 36. R. A. Farrar, P. L. Harrison, J Mater Sci. 1987, vol. 22, pp. 3812-3820.

    Article  Google Scholar 

  37. 37. A. P. Reynolds, W. Tang, T. Gnaupel-Herold, H. Prask, Scripta Mater. 2003, vol. 48, pp. 1289-1294.

    Article  Google Scholar 

  38. 38. H. K. D. H. Bhadeshia, T. Debroy, Sci. Technol. Weld. Joining 2009, vol. 14, pp. 193-196.

    Article  Google Scholar 

  39. 39. U. F. H. R. Suhuddin, S. Mironov, Y. S. Sato, H. Kokawa, C. W. Lee, Acta Mater. 2009, vol. 57, pp. 5406-5418.

    Article  Google Scholar 

  40. 40. Y. S. Sato, T. W. Nelson, C. J. Sterling, R. J. Steel, C. O. Pettersson, Mater. Sci. Eng., A 2005, vol. 397, pp. 376-384.

    Article  Google Scholar 

  41. 41. Y. S. Sato, H. Yamanoi, H. Kokawa, T. Furuhara, Scripta Mater. 2007, vol. 57, pp. 557-60.

    Article  Google Scholar 

  42. S. Gourdet, F. Montheillet, Acta Mater., 2003, vol. 51, pp. 2685-2699.

    Article  Google Scholar 

  43. 43. X. J. Zhang, P. D. Hodgson, P. F. Thomson, J. Mater. Process. Technol. 1996, vol. 60, pp. 615 - 619.

    Article  Google Scholar 

  44. 44. P. D. Hodgson, M. R. Hickson, R. K. Gibbs, Mater. Sci. Forum 1998, vol. 284-286, pp. 63-72.

    Article  Google Scholar 

  45. R. Priestner, E. delosRios, Met. Technol. 1980, vol. 7, pp. 309 - 316.

    Article  Google Scholar 

  46. 46. P. J. Hurley, P.D. Hodgson, Mater. Sci. Eng., A 2001, vol. 302, pp. 206 - 214.

    Article  Google Scholar 

  47. 47. L. Y. Wei, T. W. Nelson, Mater. Sci. Eng., A 2012, vol. 556, pp. 51 - 59.

    Article  Google Scholar 

  48. 48. D. Zhang, H. Terasaki, Y. Komizo, Acta Mater. 2010, vol. 58, pp. 1369 - 1378.

    Article  Google Scholar 

  49. 49. F. R. Xiao, B. Liao, Y. Y. Shan, G. Y. Qiao, Y. Zhong, C. L. Zhang, K. Yang, Mater. Sci. Eng., A 2006, vol. 431, pp. 41-52.

    Article  Google Scholar 

  50. 50. P. J. Withers, H. K. Bhadeshia, Mater. Sci. Technol. 2001, vol. 17, pp. 366 - 375.

    Article  Google Scholar 

  51. 51. P. J. Withers, H. K. D. H. Bhadeshia, Mater. Sci. Technol. 2001, vol. 17, pp. 355 - 365.

    Article  Google Scholar 

  52. 52. R. W. Fonda, J. F. Bingert, K. J. Colligan, Scripta Mater. 2004, vol. 51, pp. 243 - 248.

    Article  Google Scholar 

  53. 53. P. B. Prangnell, C. P. Heason, Acta Mater. 2005, vol. 53, pp. 3179 - 3192.

    Article  Google Scholar 

  54. 54. R. Nanadan, T. DebRoy, H. K. D. H. Bhadeshia, Prog. Mater Sci. 2008, vol. 53, pp. 980 - 1023.

    Article  Google Scholar 

  55. 55. P. S. Davies, B. P. Wynne, W. M. Rainforth, M. J. Thomas, P. L. Threadgill, Metall. Mater. Trans. A 2011, vol. 42, pp. 2278 - 2289.

    Article  Google Scholar 

  56. 56. R. W. Fonda, K. E. Knipling, Sci. Technol. Weld. Joining 2011, vol. 16, pp. 288 - 294.

    Article  Google Scholar 

  57. 57. F. Montheillet, M. Cohen, J. J. Jonas, Acta Metall. 1984, vol. 32, pp. 2077 - 2089.

    Article  Google Scholar 

  58. 58. J. Baczynski, J. J. Jonas, Acta Mater. 1996, vol. 44, pp. 4273 - 4288.

    Article  Google Scholar 

  59. 59. S. Li, I. J. Beyerleinb, M. Bourkea, Mater. Sci. Eng., A 2005, vol. 394, pp. 66 - 77.

    Article  Google Scholar 

  60. 60. G. Kurdjumove, G. Z. Sachs, Physics 1930, vol. 64, pp. 325 - 343.

    Article  Google Scholar 

  61. 61. Y. He, S. Godet, J. J. Jonas, Acta Mater. 2005, vol. 53, pp. 1179-1190.

    Article  Google Scholar 

  62. 62. Y. He, S. Godet, P. J. Jacques, J. J. Jonas, Acta Mater. 2006, vol. 54, pp. 1323-1334.

    Article  Google Scholar 

  63. 63. K. E. Knipling, R. W. Fonda, Scripta Mater. 2009, vol. 60, pp. 1097 - 1100.

    Article  Google Scholar 

  64. 64. M. Abbasi, T. W. Nelson, C. D. Sorensen, Metall. Mater. Trans. A 2012, vol. 43, pp. 4940 - 4946.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by the Advanced Forming Research Centre (AFRC), University of Strathclyde, which receives partial financial support from the UK’s High Value Manufacturing CATAPULT. Dr N. A. McPherson, formerly of BAE Systems Marine, Govan, Glasgow, is thanked for providing the FSW specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rahimi.

Additional information

Manuscript submitted May 8, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, S., Wynne, B.P. & Baker, T.N. Development of Microstructure and Crystallographic Texture in a Double-Sided Friction Stir Welded Microalloyed Steel. Metall Mater Trans A 48, 362–378 (2017). https://doi.org/10.1007/s11661-016-3833-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3833-8

Keywords

Navigation