Skip to main content
Log in

Twin Interactions in Pure Ti Under High Strain Rate Compression

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Twin interactions associated with {11\( \overline{2} \)1} (E2) twins in titanium deformed by high strain rate (~2600 s−1) compression were studied using electron backscatter diffraction technique. Three types of twins, {10\( \overline{1} \)2} (E1), {11\( \overline{2} \)2} (C1), and {11\( \overline{2} \)4} (C3), were observed to interact with the preformed E2 twins in four parent grains. The E1 variants nucleated at twin boundaries of some E2 variants. And the C3 twins were originated from the intersection of C1 and E2. The selection of twin variant was investigated by the Schmid factors (SFs) and the twinning shear displacement gradient tensors (DGTs) calculations. The results show that twin variants that did not follow the Schmid law were more frequently observed under high strain rate deformation than quasi-static deformation. Among these low-SF active variants, 73 pct (8 out of 11) can be interpreted by DGT. Besides, 26 variants that have SF values close to or higher than their active counterparts were absent. Factors that may affect the twin variant selections were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.G. Partridge: Metall. Rev., 1967, vol. 118, pp. 169-94.

    Google Scholar 

  2. M.H. Yoo: Metall. Trans. A., 1981, vol. 12, pp. 409-18.

    Article  Google Scholar 

  3. F. Xu, X.Y. Zhang, H.T. Ni, and Q. Liu: Mater. Sci. Eng. A, 2012, vol. 541, pp. 190-95.

    Article  Google Scholar 

  4. J.W. Christian, and S. Mahajan: Prog. Mater. Sci., 1995, vol. 39, pp. 1-157.

    Article  Google Scholar 

  5. S.G. Song, and G.T. GrayIII: Acta Metall. Mater., 1995, vol. 43, pp. 2339-50.

    Article  Google Scholar 

  6. S. Vaidya, and S. Mahajan: Acta Metall. 1980, vol. 28, pp. 1123-31.

    Article  Google Scholar 

  7. L. Capolungo, I.J. Beyerlein, and C.N. Tome, Scripta Mater., 2009, vol. 60, pp. 32-35.

    Article  Google Scholar 

  8. L. Wang, Y. Yang, P. Eisenlohr, T.R. Bieler, M.A. Crimp, and D.E. Mason: Metall. Mater. Trans. A, 2010, vol. 41, pp. 421-30.

    Article  Google Scholar 

  9. L. Wang, P. Eisenlohr, Y. Yang, T.R. Bieler, and M.A. Crimp: Scripta Mater., 2010, vol. 63, pp. 827-30.

    Article  Google Scholar 

  10. D.R. Chichili, K.T. Ramesh, and K.J. Hemker: Acta Mater., 1998, vol. 46, pp. 1025-43.

    Article  Google Scholar 

  11. L. Wang, R. Barabash, and T. Bieler: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3364-74.

    Google Scholar 

  12. H. Qin, and J.J. Jonas: Acta Mater., 2014, vol. 75, pp. 198-211.

    Article  Google Scholar 

  13. H. Qin, J.J. Jonas, H. Yu, N. Brodusch, R. Gauvin, and X. Zhang: Acta Mater., 2014, vol. 71, pp. 293-305.

    Article  Google Scholar 

  14. S. Mu, J.J. Jonas, and G. Gottstein: Acta Mater., 2012, vol. 60, pp. 2043-53.

    Article  Google Scholar 

  15. J.J. Jonas, S. Mu, T. Al-Samman, G. Gottstein, L. Jiang, and E. Martin: Acta Mater., 2011, vol. 59, pp. 2046-56.

    Article  Google Scholar 

  16. C. Schuman, L. Bao, J.S.b. Lecomte, Y. Zhang, J.M. Raulot, M.J. Philippe, and C. Esling: Adv. Eng. Mater., 2011, vol. 13, pp. 1114-21.

    Article  Google Scholar 

  17. C. Schuman, L. Bao, J.S. Lecomte, Y.D. Zhang, J.M. Raulot, M.J. Philippe, and C. Esling: Adv. Eng. Mater., 2012, vol. 14, pp. 304-11.

    Article  Google Scholar 

  18. W.Z. Zhong, A. Rusinek, T. Jankowiak, F. Abed, R. Bernier, and G. Sutter: Tribol. Int., 2015, vol. 90, pp. 1-14.

    Article  Google Scholar 

  19. M.M. Al-Mousawi, S.R. Reid, and W.F. Deans: J. Mech. Eng. Sci., 1997, vol. 211, pp. 273-92.

    Article  Google Scholar 

  20. B.A. Gama, S.L. Lopatnikov, and J.W. Gillespie: Appl. Mech. Rev., 2004, vol. 57, pp. 223-50.

    Article  Google Scholar 

  21. S. Nemat-Nasser, J.B. Isaacs, and J.E. Starret: Proc. R. Soc. Lond. A, 1991, vol. 435, pp. 371-91.

    Article  Google Scholar 

  22. J.F. Bingert, T.A. Mason, G.C. Kaschner, P.J. Maudlin, and G.T. Gray III: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 955-63.

    Article  Google Scholar 

  23. S.I. Wright, and R.J. Larsen: J. Microsc., 2002, vol. 205, pp. 245-52.

    Article  Google Scholar 

  24. Y.J. Chen, Y.J. Li, X.J. Xu, J. Hjelen, and H.J. Roven: Mater. Lett., 2014, vol. 117, pp. 195-98.

    Article  Google Scholar 

  25. F. Xu, X.Y. Zhang, H.T. Ni, Y.M. Cheng, Y.T. Zhu, and Q. Liu: Mater. Sci. & Eng. A, 2013, vol. 564, pp. 22-33.

    Article  Google Scholar 

  26. J. Gong, and A.J. Wilkinson: Acta Mater., 2009, vol. 57, pp. 5693-705.

    Article  Google Scholar 

  27. R. Keller, and R. Geiss: J. Microsc., 2012, vol. 245, pp. 245-51.

    Article  Google Scholar 

  28. M.A. Groeber, B.K. Haley, M.D. Uchic, D.M. Dimiduk, and S. Ghosh: Mater. Charact., 2006, vol. 57, pp. 259-73.

    Article  Google Scholar 

  29. D.S. Xu, J.P. Chang, J. Li, R. Yang, D. Li, and S. Yip: Mater. Sci. Eng. A, 2004, vol. 387-389, pp. 840-44.

    Article  Google Scholar 

  30. D.S. Xu, R. Yang, J. Li, J.P. Chang, H. Wang, D. Li, and S. Yip: Comp. Mater. Sci., 2006, vol. 36, pp. 60-64.

    Article  Google Scholar 

  31. D.S. Xu, H. Wang, R. Yang, and P. Veyssiére: Acta Mater., 2008, vol. 56, pp. 1065-74.

    Article  Google Scholar 

  32. D.S. Xu, H. Wang, Y. Li, and R. Yang: Structural Aluminides for Elevated Temperatures. TMS, Warrendale 2008, pp. 119-24

    Google Scholar 

  33. T. Wang, B. Li, M. Li, Y. Li, Z. Wang, and Z. Nie: Mater. Charact., 2015, vol. 106, pp. 218-25.

    Article  Google Scholar 

  34. C. Zener, and J.H. Hollomon: J. Appl. Phys., 1944, vol. 15, pp. 22-32.

    Article  Google Scholar 

  35. S.V. Kailas, Y.V.R.K. Prasad, and S.K. Biswas: Metall. Mater. Trans. A, 1994, vol. 25, pp. 1425-34.

    Article  Google Scholar 

  36. A. Ghaderi, and M.R. Barnett: Acta Mater., 2011, vol. 59, pp. 7824-39.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are happy to acknowledge Dr. Yufei Li and Xianglin Chen for assistance during EBSD sample preparation, and Professor Dongsheng Xu and Yuting Zhang for helpful discussions and suggestions. This research work is financially supported by the subject development fund of the Science and Technology on Surface Physics and Chemistry Laboratory (No. ZDXKFZ201402), the subject development fund of CAEP (No. 2015B0301070) and the fund of the Institute of Materials (No. SJZ201410).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Zhou or Ge Sang.

Additional information

Manuscript submitted April 21, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Xiao, D., Jiang, C. et al. Twin Interactions in Pure Ti Under High Strain Rate Compression. Metall Mater Trans A 48, 126–138 (2017). https://doi.org/10.1007/s11661-016-3832-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3832-9

Keywords

Navigation