Metallurgical and Materials Transactions A

, Volume 48, Issue 1, pp 109–125 | Cite as

Tempering-Induced Microstructural Changes in the Weld Heat-Affected Zone of 9 to 12 Pct Cr Steels and Their Influence on Sliding Wear

  • Igor VelkavrhEmail author
  • Fevzi Kafexhiu
  • Stefan Klien
  • Alexander Diem
  • Bojan Podgornik


Increasing amount of tribological applications is working under alternating high/low temperature conditions where the material is subjected to temperature fatigue mechanisms such as creep, softening due to annealing, and at the same time must withstand mechanical wear due to sliding contact with pairing bodies. Steam turbine valves, gate valves, valve heads, stems, seats and bushings, and contacting surfaces of the carrier elements are some examples of such applications. The purpose of the present study is to evaluate the potential of X20 and P91 steels as materials for applications operating under combined effect of mechanical wear and alternating high/low temperature conditions. It was focused on how the microstructural changes occurring in the weld zone affect the wear properties of the selected materials. Generally, with longer tempering time and higher tempering temperature, the number of carbide precipitates decreased, while their relative spacing increased. Before tempering, the morphology of the steel matrix (grain size, microstructure homogeneity) governed the wear resistance of both steels, while after tempering wear response was determined by the combination of the number and the size of carbide particles. After tempering, in X20 steel larger number of stable M23C6 carbides was observed as compared with P91 steel, resulting in lower wear rates. It was observed that for both steels, a similar combination of number density and size distribution of carbide particles provided the highest wear resistance.


Carbide Wear Rate Steam Turbine Carbide Particle Secondary Hardening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work presented was funded by the Austrian COMET Programme (Project XTribology, No. 849109) and carried out at the “Excellence Center of Tribology” (AC2T research GmbH) in co-operation with V-Research GmbH and Institute of metals and technology.


  1. 1.
    K.R. Mutama: ASME 2013 Power Conference, Volume 1: Fuels and Combustion, Material Handling, Emissions; Steam Generators; Heat Exchangers and Cooling Systems; Turbines, Generators and Auxiliaries; Plant Operations and Maintenance, July 29–August 1, 2013, Boston, Massachusetts, USA, Paper No. POWER2013-98289, ASME, New York, USA, 2013, pp. V001T04A009.Google Scholar
  2. 2.
    I.G. Wright, P.J. Maziasz, F.V. Ellis, T.B. Gibbons and D.A. Woodford: Proceedings of the 29th International Conference on Coal Utilization and Fuel Systems, Clearwater, Florida, USA, April 18–23, 2004, Coal Technology Association, Gaithersburg, 2004.Google Scholar
  3. 3.
    P.J. Maziasz, I.G. Wright, J.P Shingeldecker, T.B. Gibbons and R.R. Romanosky: Advances in Materials Technology for Fossil Power Plants: Proceedings from the Fourth International Conference, October 25–28, 2004, Hilton Head Island, South Carolina, USA, Electric Power Research Institute, Palo Alto, CA, 2005, pp. 602–622.Google Scholar
  4. 4.
    A.A. Bazazi: Doctoral dissertation, Ruhr-Universität Bochum, 2009.Google Scholar
  5. 5.
    D.J. Abson, J.S. Rothwell and B.J. Cane: Advances in Material Technology for Fossil Power Plants: Proceedings from the Fifth International Conference, October 3–5, 2007, Miami, Florida, USA, Electric Power Research Institute, Palo Alto, California, USA, 2008, pp. 790–808.Google Scholar
  6. 6.
    A. DiGianfrancesco, S.T. Vipraio and D. Venditti: Procedia Eng., 2013, vol. 55, pp. 27–35. CrossRefGoogle Scholar
  7. 7.
    L. Xu, B. Wang, J. Zhu, W. Li and Z. Zheng: Appl. Surf. Sci., 2016, vol. 379, pp. 39–46. CrossRefGoogle Scholar
  8. 8.
    B.M. Schönbauer, A. Perlega, U.P. Karr, D. Gandy and S.E. Stanzl-Tschegg: Int. J. Fatigue, 2015, vol. 76, pp. 19–32. CrossRefGoogle Scholar
  9. 9.
    J. Metsäjoki, E. Huttunen-Saarivirta and T. Lepistö: Fuel, 2014, vol. 133, pp. 173–181. CrossRefGoogle Scholar
  10. 10.
    F. Abe, T.U. Kern and R. Viswanathan: Creep-resistant steels, Woodhead Publishing, CRC Press, Cambridge, England, 2008.CrossRefGoogle Scholar
  11. 11.
    J. Hald: Steel Research, 1996, vol. 67, no. 9, pp. 369–374.CrossRefGoogle Scholar
  12. 12.
    A.A. Tchizhik, T.A. Tchizhik and A.A. Tchizhik: J. Mater. Process. Technol., 1998, vol. 77, no. 1, pp. 226–232.CrossRefGoogle Scholar
  13. 13.
    D. Rojas, J. Garcia, O. Prat, G. Sauthoff and A.R. Kaysser-Pyzalla: Mater. Sci. Eng., A, 2011, vol. 528, no. 15, pp. 5164–5176. CrossRefGoogle Scholar
  14. 14.
    Y.X. Chen, W. Yan, W. Wang, Y.Y. Shan and K. Yang: Mater. Sci. Eng., A, 2012, vol. 534, pp. 649–653. CrossRefGoogle Scholar
  15. 15.
    K.-H. Lee, J.-Y. Suh, S.-M. Hong, J.-Y. Huh and W.-S. Jung: Mater. Charact., 2015, vol. 106, pp. 266–272. CrossRefGoogle Scholar
  16. 16.
    S.D. Yadav, S. Kalácska, M. Dománková, D. Canelo Yubero, R. Resel, I. Groma, C. Beal, B. Sonderegger, C. Sommitsch and C. Poletti: Mater. Charact., 2016, vol. 115, pp. 23–31. CrossRefGoogle Scholar
  17. 17.
    B. Fournier, F. Dalle, M. Sauzay, J. Longour, M. Salvi, C. Caës, I. Tournié, P.-F. Giroux and S.-H. Kim: Mater. Sci. Eng., A, 2011, vol. 528, no. 22–23, pp. 6934–6945. CrossRefGoogle Scholar
  18. 18.
    B.M. Schönbauer and S.E. Stanzl-Tschegg: Ultrasonics, 2013, vol. 53, no. 8, pp. 1399–1405. CrossRefGoogle Scholar
  19. 19.
    B.M. Schönbauer, S.E. Stanzl-Tschegg, A. Perlega, R.N. Salzman, N.F. Rieger, S. Zhou, A. Turnbull and D. Gandy: Int. J. Fatigue, 2014, vol. 65, pp. 33–43.CrossRefGoogle Scholar
  20. 20.
    G. Härkegård: Theor. Appl. Fract. Mech., 2016, vol. 84, pp. 93–97. CrossRefGoogle Scholar
  21. 21.
    K. Asai: Procedia Eng., 2010, vol. 2, no. 1, pp. 475–484.CrossRefGoogle Scholar
  22. 22.
    M. Łomozik, A. Hernas and M.L. Zeman: Mater. Sci. Eng., A, 2015, vol. 637, pp. 82–88. CrossRefGoogle Scholar
  23. 23.
    K. Fuentes and K. Oberle: J. Eng. Gas Turbines Power, 1989, vol. 111, no. 4, pp. 666–671. CrossRefGoogle Scholar
  24. 24.
    C. Borgmann, P. Dumstorff, T.-U. Kern, H. Almstedt and K. Niepold: J. Eng. Gas Turbines Power, 2015, vol. 138(4):042601-042601.CrossRefGoogle Scholar
  25. 25.
    K. Nakamura, T. Tabei and T. Takano: Fuji Electric Journal, 2010, vol. 83, no. 3, pp. 123–128. Google Scholar
  26. 26.
    P. Mayr, T.A. Palmer, J.W. Elmer and H. Cerjak: Adv. Mat. Res., 2007, vol. 15-17, pp. 1014-1019.CrossRefGoogle Scholar
  27. 27.
    O. Prat, J. García, D. Rojas, J.P. Sanhueza, C. Camurri: Mater. Chem. Phys., 2014, vol. 143, no. 2, pp. 754–764. CrossRefGoogle Scholar
  28. 28.
    K. Miao, Y. He, N. Zhu, J. Wang, X. Lu and L. Li: J. Alloys Compd., 2015, vol. 622, pp. 513–523. CrossRefGoogle Scholar
  29. 29.
    Y. Xu, X. Zhang, Y. Tian, C. Chen, Y. Nan, H. He and M. Wang: Mater. Charact., 2016, vol. 111, pp. 122–127. CrossRefGoogle Scholar
  30. 30.
    Y. Han, X. Xue, T. Zhang, R. Hu and J. Li: Mater. Sci. Eng., A, 2016, vol. 667, pp. 391–401. CrossRefGoogle Scholar
  31. 31.
    F. Liu, M. Rashidi, L. Johansson, J. Hald and H.-O. Andrén: Scr. Mater., 2016, vol. 113, pp. 93–96. CrossRefGoogle Scholar
  32. 32.
    Q. Lu, W. Xu and S. van der Zwaag: Acta Mater., 2014, vol. 77, pp. 310–323. CrossRefGoogle Scholar
  33. 33.
    S.L. Mannan and K. Laha: Trans. Indian Inst. Met., 1996, vol. 49, no. 4, pp. 303–320.Google Scholar
  34. 34.
    F. Abe and M. Tabuchi: Sci. Technol. Weld. Joi., 2004, vol. 9, no. 1, pp. 22–30.CrossRefGoogle Scholar
  35. 35.
    J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak and A. Cardona: Nat. Methods, 2012, vol. 9, no. 7, pp. 676–682.CrossRefGoogle Scholar
  36. 36.
    GIMP – The GNU Image Manipulation Program: Accessed December, 2015.
  37. 37.
    A. Mitchell: The ESRI Guide to GIS Analysis, vol. 2: Spatial Measurements and Statistics, ESRI Press, California, 2005.Google Scholar
  38. 38.
    C. Dinh, B. Marriner, R. Tadros, S.Y. Kim and T. Farineau: General Electric Company, 2016,, Accessed September 2016.
  39. 39.
    I. Velkavrh, F. Ausserer, S. Klien, J. Brenner, P. Forêt and A. Diem: Tribol. Int., 2014, vol. 79, pp. 99–110.CrossRefGoogle Scholar
  40. 40.
    J.F. Archard: J. Appl. Phys., 1953, vol. 24, no. 8, pp. 981–988.CrossRefGoogle Scholar
  41. 41.
    F. Vodopivec, M. Jenko and J. Vojvodič-Tuma: Metalurgija, 2006, vol. 45, no. 3, pp. 147–153.Google Scholar
  42. 42.
    F. Abe (2008) Sci. Technol. Adv. Mater, 9(1):013002 CrossRefGoogle Scholar
  43. 43.
    D.A. Skobir, F. Vodopivec, M. Jenko, S. Spaić and B. Markoli: Int. J. Mater. Res., 2004, vol. 95, no. 11, pp. 1020–1024.Google Scholar
  44. 44.
    M. Vardavoulias, M. Jeandin and F. Grillon: Scr. Metall. Mater., 1993, vol. 29, no. 3, pp. 359–364.CrossRefGoogle Scholar
  45. 45.
    P.W. Voorhees: J. Stat. Phys., 1985, vol. 38, no. 1, pp. 231–252.CrossRefGoogle Scholar
  46. 46.
    F. Kafexhiu: Master thesis, Jozef Stefan International Postgraduate School, Ljubljana, Slovenia, 2010.Google Scholar
  47. 47.
    F. Kafexhiu, F. Vodopivec and J.V. Turna: Mater. Tehnol., 2012, vol. 46, no. 5, pp. 459–464. Google Scholar
  48. 48.
    H.Y. Zhang, Y.H. Lu, M. Ma and J. Li: Wear, 2014, vol. 315, no. 1–2, pp. 58–67. CrossRefGoogle Scholar
  49. 49.
    H. M. Lee, S.M. Allen and M. Grujicic: Metall. Trans. A, 1991, vol. 22, pp. 2863–2868.CrossRefGoogle Scholar
  50. 50.
    H. M. Lee, S.M. Allen and M. Grujicic: Metall. Trans. A, 1991, vol. 22, pp. 2869–2876.CrossRefGoogle Scholar
  51. 51.
    F.H. Stott: Tribol. Int., 1998, vol. 31, no. 1–3, pp. 61–71. CrossRefGoogle Scholar
  52. 52.
    I. Velkavrh, F. Ausserer, S. Klien, J. Voyer, A. Ristow, J. Brenner, P. Forêt and A. Diem: Tribol. Int., 2016, vol. 98, pp. 155–171. CrossRefGoogle Scholar
  53. 53.
    F.H. Stott: Tribol. Int., 2002, vol. 35, pp. 489–495. CrossRefGoogle Scholar
  54. 54.
    A. Pauschitz, M. Roy and F. Franek: Tribol. Int., 2008, vol. 41, pp. 584–602. CrossRefGoogle Scholar
  55. 55.
    S.R. Pearson, P.H. Shipway, J.O. Abere and R.A.A. Hewitt: Wear, 2013, vol. 303, pp. 622–631. CrossRefGoogle Scholar
  56. 56.
    X.H. Cui, S.Q. Wang, M.X. Wei and Z.R. Yang: J. Mater. Eng. Perform., 2011, vol. 20, no. 6, pp. 1055–1062. CrossRefGoogle Scholar
  57. 57.
    M.X. Wei, S.Q. Wang, K.M. Chen and X.H. Cui: Wear, 2011, vol. 272, pp. 110–121. Google Scholar
  58. 58.
    S. Mozgovoy, J. Hardell, L. Deng, M. Oldenburg and B. Prakash: Tribology - Materials, Surfaces & Interfaces, 2014, vol. 8, no. 2, pp. 65–73. CrossRefGoogle Scholar
  59. 59.
    O.A. Zambrano, J.J. Coronado, S.A. Rodríguez (2015) Tribol. Lett. 57(2):19.CrossRefGoogle Scholar
  60. 60.
    S.Q. Wang, M.X. Wei, F. Wang, X.H. Cui and C. Dong, Tribol. Lett., 2008, vol. 32, no. 2, pp. 67–72. CrossRefGoogle Scholar
  61. 61.
    B. Podgornik, B. Žužek, F. Kafexhiu, V. Leskovšek (2016) Tribol. Lett. 63(1): 5. CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Igor Velkavrh
    • 1
    Email author
  • Fevzi Kafexhiu
    • 2
  • Stefan Klien
    • 1
  • Alexander Diem
    • 1
  • Bojan Podgornik
    • 2
  1. 1.V-Research GmbHDornbirnAustria
  2. 2.Institute of Metals and TechnologyLjubljanaSlovenia

Personalised recommendations