Skip to main content
Log in

Effect of Tungsten on Long-Term Microstructural Evolution and Impression Creep Behavior of 9Cr Reduced Activation Ferritic/Martensitic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present study describes the changes in the creep properties associated with microstructural evolution during thermal exposures to near service temperatures in indigenously developed reduced activation ferritic-martensitic steels with varying tungsten (1 and 1.4 wt pct W) contents. The creep behavior has been studied employing impression creep (IC) test, and the changes in impression creep behavior with tungsten content have been correlated with the observed microstructures. The results of IC test showed that an increase in 0.4 pct W decreases the creep rate to nearly half the value. Creep strength of 1.4 pct W steel showed an increase in steels aged for short durations which decreased as aging time increased. The microstructural changes include coarsening of precipitates, reduction in dislocation density, changes in microchemistry, and formation of new phases. The formation of various phases and their volume fractions have been predicted using the JMatPro software for the two steels and validated by experimental methods. Detailed transmission electron microscopy analysis shows coarsening of precipitates and formation of a discontinuous network of Laves phase in 1.4 W steel aged for 10,000 hours at 823 K (550 °C) which is in agreement with the JMatPro simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.L. Klueh and D.R. Harries: High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, ed. ASTM. vol. ASTM MONO3. 2001.

  2. M. Tamura, K. Shinozuka, K. Masamura, K. Ishizawa, S. Sugimoto, J. Nucl. Mater., 1998, vols. 258–263, Part 2: pp. 1158-1162.

    Article  Google Scholar 

  3. C.R. Brinkman, B. Gieseke, and P.J. Maziasz: The influence of long term thermal aging on the microstructure and mechanical properties of modified 9Cr-1Mo steel, in Microstructures and Mechanical Properties of Aging Material, R. Viswanathan, P.K. Liaw, K.L. Murty, E.P. Simonen and D. Frear, Editor. 1993, The Minerals, Metals & Materials Society, Orlando, pp. 107-116.

    Google Scholar 

  4. S. Saroja, M. Vijayalakshmi, and V.S. Raghunathan: Mater.Trans. JIM, 1993. vol. 34 (10), p. 901.

    Article  Google Scholar 

  5. F. Abe: Metall. Mater. Trans. A, 2005, vol. 36 (2), pp. 321-332.

    Article  Google Scholar 

  6. S.G. Hong, W.B. Lee, and C.G. Park: J. Nuc. Mater., 2001, vol. 288, pp. 202-207.

    Article  Google Scholar 

  7. J. Cermak., J. Kucera, B. Million, J Krumpos: Kov. Mater., 1980, vol. 18, p. 537.

    Google Scholar 

  8. R. Mythili, Ravikirana, J. Vanaja, K. Laha, S. Saroja, T. Jayakumar, M. D. Mathew, E. Rajendrakumar: Proc. Eng, 2013, vol. 55, pp. 295-299.

    Article  Google Scholar 

  9. L. J. Seung, A. H. Ghassemi, M. Kouichi, M. Taro, A. Hitoshi: Mater. Sci. Eng. A, 2006, vol. 428 (1–2), pp. 270-275.

    Google Scholar 

  10. C.G. Panait, W. Bendick, A. Fuchsmann, A. F. Gourgues-Lorenzon, J.Besson: Int. J. Pressure Vessels Piping, 2010, vol. 87(6), pp. 326-335.

    Google Scholar 

  11. K. Laha, S. Saroja, A. Moitra, R. Sandhya, M.D.Mathew, T. Jayakumar, E. Rajendrakumar: J. Nucl. Mater., 2013, vol. 439: pp. 41–50.

    Article  Google Scholar 

  12. F. Abe: Mater. Sci. Eng., 2004. 387-389: p. 565-569.

    Article  Google Scholar 

  13. R. Lindau, M.Schirra: Fusion Eng. Des., 2001. 58-59(0): p. 781-785.

    Article  Google Scholar 

  14. T. Hasegawa, Y.R. Abe, Y. Tomita, N.Maruyama., M. Sugiyama: ISIJ International, 2001. 41(8): p. 922-929.

    Article  Google Scholar 

  15. T. Mukherjee, W.E. Stumpf and C.M. Sellars: J. Mater. Sci., 1968, vol. 3(2), pp. 127-135.

    Article  Google Scholar 

  16. U. R. Kattner: JOM, 1997, vol. 49 (12), pp. 14-19.

    Article  Google Scholar 

  17. H.L. Lukas, J. Weiss, and E.-T. Henig: CALPHAD, 1982, vol. 6, pp. 229-251.

    Article  Google Scholar 

  18. Naveena, V.D., Vijayanand, V. Ganesan, K. Laha, M. D. Mathew: Mater. Sci. Technol., 2014, vol. 30 (10): pp. 1223-1228.

    Article  Google Scholar 

  19. V. Thomas Paul, C. Sudha, S. Saroja: Metall. Mater. Trans. A, 2015, vol. 46 (8), pp. 3378-3392.

    Article  Google Scholar 

  20. J. Hald: Steel Res., 1996, vol. 67 (9), pp. 369-374.

    Article  Google Scholar 

  21. F. Abe, H. Araki, and T. Noda: Metall.Mater. Trans A, 1991, vol. 22 (10): pp. 2225-2235.

    Article  Google Scholar 

  22. S. Ghosh: J. Mater. Sci., 2010, vol. 45 (7), pp. 1823-1829.

    Article  Google Scholar 

  23. Y. Hosoi, N. Wade, S. Kunimitsu, T. Urita: J. Nucl. Mater., 1986, vols. 141–143, pp. 461-467.

    Article  Google Scholar 

  24. G. Dimmler, P. Weinert, E. Kozeschnik, H. Cerjak: Mater. Charact., 2003, vol. 51 (5), pp. 341-352.

    Article  Google Scholar 

  25. L. Korcakova, J. Hald, M.A.J. Somers: Mater. Charact., 2001, vol. 47 (2), pp. 111-117.

    Article  Google Scholar 

  26. A.W. Bowen, G.M. Leak: Metall. Trans. A, 1970, vol. 1 (6), pp. 1695-1700.

    Article  Google Scholar 

  27. K. Sawada, M. Takeda, K. Maruyama, R. Ishii, M. Yamada, Y. Nagae, R. Komine: Mater. Sci. and Eng. A, 1999, vol. 267 (1), pp. 19-25.

    Article  Google Scholar 

  28. F. Abe: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 770-773.

    Article  Google Scholar 

  29. M. Yoshinori, K. Toshiyuki, M. Masahiko, M. Toru: ISIJ Int., 2002, vol. 42 (12), pp. 1423-1429.

    Article  Google Scholar 

  30. J. Hald, L. Korcakova: ISIJ Int., 2003, vol. 43 (3), pp. 420-427.

    Article  Google Scholar 

  31. T. Sawai, K. Shiba, A. Hishinuma: J. Nucl. Mater., 2000, vols. 283–287, pp. 657-661.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks to Dr. T. Jayakumar, Dr. K. Laha, and Dr. M. Vijayalakshmi for their support and Dr. T. Karthikeyan for the EBSD experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saroja.

Additional information

Manuscript submitted April 8, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas Paul, V., Vijayanand, V.D., Sudha, C. et al. Effect of Tungsten on Long-Term Microstructural Evolution and Impression Creep Behavior of 9Cr Reduced Activation Ferritic/Martensitic Steel. Metall Mater Trans A 48, 425–438 (2017). https://doi.org/10.1007/s11661-016-3823-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3823-x

Keywords

Navigation