Skip to main content
Log in

Experimental Investigation and Computer Simulation of Diffusion in Fe-Mo and Fe-Mn-Mo Alloys with Different Optimization Methods

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In order to simulate the diffusional phase transformations involving the fcc and bcc phases for microalloyed steels, the diffusion mobilities for fcc and bcc Fe-Mo and Fe-Mn-Mo alloys were experimentally investigated and critically assessed. The diffusion-couple technique was employed to extract the interdiffusion coefficients in Fe-Mo and Fe-Mn-Mo alloys with the Sauer–Freise and Whittle–Green methods. Based on the present experimental interdiffsivities, the mobility parameters for the fcc and bcc phases in the Fe-Mo and Fe-Mn-Mo systems were optimized using the traditional method. Simultaneously, a direct method was developed and utilized to directly fit mobilities to the diffusion profiles rather than the diffusivities in the present work. The satisfactory description of the diffusion behavior in the Fe-Mo and Fe-Mn-Mo systems has confirmed the reliability of the direct method. Particularly, the two sets of diffusion mobilities obtained with both methods could simulate the diffusion phenomenon between the fcc and bcc phases in the Fe-Mo and Fe-Mn-Mo systems successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. I. Mejía, A.E. Salas-Reyes, A. Bedolla-Jacuinde, J. Calvo and J.M. Cabrera: Mater. Sci. Eng., A, 2014, vol. 616, pp. 229-239.

    Article  Google Scholar 

  2. A.E. Salas-Reyes, I. Mejía, A. Bedolla-Jacuinde, A. Boulaajaj, J. Calvo and J.M. Cabrera: Mater. Sci. Eng., A, 2014, vol. 611, pp. 77-89.

    Article  Google Scholar 

  3. J.-O. Andersson, T. Helander, L. Höglund, P. Shi and B. Sundman: CALPHAD, 2002, vol. 26, pp. 273-312.

    Article  Google Scholar 

  4. J.-O. Andersson and J. Ågren: J. Appl. Phys., 1992, vol. 72, pp. 1350-1355.

    Article  Google Scholar 

  5. B. Jönsson: Z. Metallkd., 1994, vol. 85, pp. 498-501.

    Google Scholar 

  6. L Höglund: KTH Royal Institute of Technology. Stockholm: Personal communication, 2015.

    Google Scholar 

  7. F. Sauer and V. Freise: Z. Electrochem., 1962, vol. 66, pp. 353-362.

    Google Scholar 

  8. D.P. Whittle and A. Green: Scripta Metall., 1974, vol. 8, pp. 883-884.

    Article  Google Scholar 

  9. J.-O. Andersson: CALPHAD, 1988, vol. 12, pp. 9-23.

    Article  Google Scholar 

  10. W. Huang: CALPHAD, 1989, vol. 13, pp. 243-252.

    Article  Google Scholar 

  11. H.L. Lukas, S.G. Fries and B. Sundman: Computational Thermodynamics: The Calphad Method, Cambridge University Press, Cambridge, 2007.

    Book  Google Scholar 

  12. K. Ishida, K. Shibuya and T. Nishizawa: J. Jpn. Inst. Met., 1973, vol. 37, pp. 1305-1313.

    Google Scholar 

  13. K. Nohara and K. Hirona: J. Jpn. Inst. Met., 1976, vol. 40, pp. 1053-1061.

    Google Scholar 

  14. J.L. Ham: Trans. AIME, 1945, vol. 35, p. 331.

    Google Scholar 

  15. M.A. Krishtal and A.P. Mokrov: Diffusion Data, 1968, vol. 3, p. 278.

    Google Scholar 

  16. P.J. Alberry and C.W. Haworth: Met. Sci., 1974, vol. 8, pp. 407-412.

    Article  Google Scholar 

  17. H. Nitta, T. Yamamoto, R. Kanno, K. Takasawa, T. Iida, Y. Yamazaki, S. Ogu and Y. Iijima: Acta Mater., 2002, vol. 50, pp. 4117-4125.

    Article  Google Scholar 

  18. J. Kučera, B. Million and K. Ciha: Kov. Mater., 1969, vol. 7, pp. 97-107.

    Google Scholar 

  19. V.T. Borisov, V.M. Golikov and G.V. Sherbedinskiy: Phys. Metal. Metalloved., 1966, vol. 22, pp. 159-160.

    Google Scholar 

  20. B. Jönsson: Scand. J. Metall., 1994, vol. 23, pp. 201-208.

    Google Scholar 

  21. X.J. Liu, H.H. Hu, J.J. Han, Y. Lu and C.P. Wang: CALPHAD, 2012, vol. 38, pp. 140-145.

    Article  Google Scholar 

  22. G. Lindwall and K. Frisk: J. Phase Equilib. Diffus., 2012, vol. 33, pp. 375-389.

    Article  Google Scholar 

  23. K. Nohara and K. Hirona: J. Jpn. Inst. Met., 1977, vol. 63, pp. 926-935.

    Google Scholar 

  24. Y. Minamino, T. Yamane, H. Araki, A. Hiraki and Y. Miyamoto: J. Iron Steel Inst. Jpn., 1988, vol. 74, pp. 733-740.

    Google Scholar 

  25. A.K. Sinha, R.A. Buckley and W. Hume-Rothery: J. Iron Steel Inst., 1967, vol. 205, pp. 191-195.

    Google Scholar 

  26. H. Harvig, G. Kirchner and B. Uhrenius: Metall. Trans., 1973, vol. 4, pp. 1059-1067.

    Article  Google Scholar 

  27. R. Bernst, G. Inden and A. Schneider: CALPHAD, 2008, vol. 32, pp. 207-216.

    Article  Google Scholar 

  28. B. Jönsson: Z. Metallkd., 1992, vol. 83, pp. 349-355.

    Google Scholar 

  29. K. Nohara and K. Hirona: J. Jpn. Inst. Met., 1973, vol. 37, pp. 731-736.

    Google Scholar 

  30. H. Nitta, K. Miura and Y. Iijima: Acta Mater., 2006, vol. 54, pp. 2833-2847.

    Article  Google Scholar 

  31. Y. Liu, L. Zhang, Y. Du, D. Yu and D. Liang: CALPHAD, 2009, vol. 33, pp. 614-623.

    Article  Google Scholar 

  32. W.D. Murray and F. Landis: Trans. ASME, 1959, vol. 81D, pp 106-112.

    Google Scholar 

  33. S. Crusius, G. Inden, U. Knoop, L. Höglund and J. Ågren: Z. Metallkd., 1992, vol. 83, pp. 673-678.

    Google Scholar 

  34. H. Larsson and R.C. Reed: Acta Mater., 2008, vol. 56, pp. 3754-3760.

    Article  Google Scholar 

  35. H. Larsson and A. Engström: Acta Mater., 2006, vol. 54, pp. 2431-2439.

    Article  Google Scholar 

  36. H. Larsson and L. Höglund: CALPHAD, 2009, vol. 33, pp. 495-501.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Chinese National Key Project of Science and Technology (Grant number: 2012ZX06004-012) is gratefully acknowledged. Weisen Zheng acknowledges the support from the National Natural Science Foundation of China (Grant number: 51401118) and the Chinese Scholarship Council (CSC). The authors would like to thank Dr. Yuwen Cui (IMDEA Materials Institute, Spain) for providing the program for the extraction of interdiffusion coefficients and Dr. Lars Höglund (KTH Royal Institute of Technology, Sweden) for valuable discussions on the direct method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Gang Lu.

Additional information

Manuscript submitted April 04, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Ågren, J., Lu, XG. et al. Experimental Investigation and Computer Simulation of Diffusion in Fe-Mo and Fe-Mn-Mo Alloys with Different Optimization Methods. Metall Mater Trans A 48, 536–550 (2017). https://doi.org/10.1007/s11661-016-3822-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3822-y

Keywords

Navigation