Skip to main content
Log in

Method for Assessing Grain Boundary Density in High-Strength, High-Toughness Ferritic Weld Metal

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A method for measuring peak values on the maxlength-area fraction curve and the perimeter-area fraction curve with morphological photos using Image Pro Plus 6.0 Soft for assessing grain boundary density in high-strength, high-toughness ferritic weld metals is developed. Results show the sizes of the peak values have a tough relationship with grain boundary densities in that a larger peak value stands for a larger grain boundary density. As ferrite transforms into a certain orientation relationship, this semi-empirical method provides handy references for judging the sizes of effective grain boundary densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W. Wang and S. Liu: Weld. J., 2002, vol. 81, pp. 132-45.

    Google Scholar 

  2. J. Vercesi and E. Surian: Weld. J., 1996, vol. 75, pp. 191-96.

    Google Scholar 

  3. G. Çam: Int. Mater. Rev., 2011, vol. 56, pp. 1-48.

    Article  Google Scholar 

  4. G. Çam, S. Erim, Ç. Yeni, and M. Koçak: Weld. J., 1999, vol. 78, pp. 193-201.

    Google Scholar 

  5. G. Çam, S. Erim, M. Koçak, and Ç. Yeni: Sci. Technol. Weld. Join., 1998, vol. 3, pp. 177-89.

    Article  Google Scholar 

  6. J.R. Yang and H.K.D.H. Bhadeshia: J. Mater. Sci., 1911, vol. 26, pp. 839-45.

    Article  Google Scholar 

  7. R.A. Farrar and P.L. Harrison: J. Mater. Sci., 1987, vol. 22, pp. 3812-20.

    Article  Google Scholar 

  8. E. Surian, M.R. De Rissone, and L. De Vedia: Weld. J., 2005, vol. 84, pp. 53s-62s.

    Google Scholar 

  9. H.K.D.H. Bhadeshia: Bainite in Steels, 2nd ed., University of Cambridge, London, U.K., 2001, p. 273.

    Google Scholar 

  10. S.D. Bhole, J.B. Nemade, L. Collins, and C. Liu: J. Mater. Process. Technol., 2006, vol. 173, pp. 92-100.

    Article  Google Scholar 

  11. X. L. Wan, K.M. Wu, K.C. Nune, Y. Li, and L. Cheng: Sci. Technol. Weld. Join., 2015, vol. 20, pp. 254-63.

    Article  Google Scholar 

  12. H. Terasaki and Y. Komizo: Sci. Technol. Weld. Join., 2006, vol. 11, pp. 561-66.

    Article  Google Scholar 

  13. K.H. Kim, J.S. Seo, C. Lee, and H.J. Kim: Weld. World, 2011, vols. 9-10, pp. 36-40.

    Article  Google Scholar 

  14. K.H. Kim, J.S. Seo, C. Lee, and H.J. Kim: Weld. World, 2011, vol. 55, pp. 30-40.

    Article  Google Scholar 

  15. K.M. Wu: Scripta Mater., 2006, vol. 54, pp. 569-74.

    Article  Google Scholar 

  16. K.M. Wu, Y. Inagawa, and M. Enomoto: Mater. Charact., 2004, vol. 52, pp. 121-27.

    Article  Google Scholar 

  17. X.L. Wan, R. Wei, and K.M. Wu: Mater. Charact., 2010, vol. 61, pp. 726-31.

    Article  Google Scholar 

  18. D. Zhang, H. Terasaki, and Y. Komizo: Acta Mater., 2010, vol. 58, pp. 1369-78.

    Article  Google Scholar 

  19. X.L. Wan, H.H. Wang, L. Cheng, and K.M. Wu: Mater. Charact., 2012, vol. 67, pp. 41-51.

    Article  Google Scholar 

  20. L. Cheng and K.M. Wu: Acta Mater., 2009, vol. 57, pp. 3754-62.

    Article  Google Scholar 

  21. A.O. Kluken, Ø. Grong, and J. Hjelen: Metall. Trans. A, 1991, vol. 27A, pp. 657-63.

    Article  Google Scholar 

  22. A.F. Gourgues, H.M. Flower, and T.C. Lindley: Mater. Sci. Technol., 2006, vol. 16, pp. 26-40.

    Article  Google Scholar 

  23. T.J. Headley and J.A. Brooks: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 5-15.

    Article  Google Scholar 

  24. J.H. Kang, D.W. Suh, J.Y. Cho, K.H. Oh, and H.C. Lee: Scripta Mater., 2003, vol. 48, pp. 91-95.

    Article  Google Scholar 

  25. M. Díaz-Fuentes, A. Iza-Mendia, and I. Gurtiérrez: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2505-16.

    Article  Google Scholar 

  26. J.R. Yang and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1989, vol. 5, pp. 93-97.

    Article  Google Scholar 

  27. H. Ohtani, S. Okanguchi, Y. Fujishiro, and Y. Ohmori: Metall. Trans. A, 1990, vol. 21A, pp. 877-88.

    Article  Google Scholar 

  28. S. Morito H. Yoshida, T. Maki, and X. Huang: Mater. Sci. Eng. A, 2006, vols. 438–440, pp. 237–40.

  29. E. Bonnevie, G. Ferriere, A. Ikhlef, D. Kaplan, and J.M. Orain: Mater. Sci. Eng. A, 2004, vol. 385, pp. 352-58.

    Article  Google Scholar 

  30. H.Q. Yan, K.M. Wu, H.H. Wang, L. Li, Y.Q. Yin, and N.C. Wu: Sci. Technol. Weld. Join., 2014, vol. 19, pp. 355-60.

    Article  Google Scholar 

  31. X.W. Lei, J. Huang, S.H. Chen, and X.K. Zhao: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 2795-803.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Huang.

Additional information

Manuscript submitted May 27, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, X., Huang, J., Chen, S. et al. Method for Assessing Grain Boundary Density in High-Strength, High-Toughness Ferritic Weld Metal. Metall Mater Trans A 48, 198–207 (2017). https://doi.org/10.1007/s11661-016-3818-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3818-7

Keywords

Navigation