Skip to main content
Log in

C/SiC Gradient Oxidation Protective Coating on Graphite by Modified Reactive Melt Infiltration Method: Effects of Processing Parameters on Transition Interface Thickness and High-Temperature Anti-oxidation Behavior

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this research, it was found that the C/SiC transition interface thickness increases without a significant decrease in toughness by modifying the reactive melt infiltration method through the addition of SiC nanoparticles. Also, the effect of the infiltration temperature on the transition interface thickness, isothermal oxidation behavior, and thermal shock resistance of the C/SiC graded coating were investigated. Coatings were characterized by X-ray diffraction, electron probe microanalysis, and scanning electron microscopy with energy-dispersive spectroscopy. Microstructural observations showed that with an increase in the heat treatment temperature, a higher amount of β-SiC (as a product of the infiltration process) is produced, which results in lower surface continuity in the coatings produced at a lower temperature. Moreover, the transition interface thickness increased with a decreasing infiltration temperature. The addition of SiC nanoparticles increased the transition interface thickness and oxidation resistance. After isothermal oxidation at 1773 K (1500 °C) for 10 hours, samples containing 7 wt pct SiC nanoparticles heat treated at 1773 K and 1873 K (1500 °C and 1600 °C) showed 13.3 and 5.03 pct weight loss, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Z.-K. Chen, X. Xiong, G.-D. Li, and Y.-L. Wang: Appl. Surf. Sci., 2009, vol. 255, pp. 9217–23.

    Article  Google Scholar 

  2. M.C. Halbig, J.D. McGuffin‐Cawley, A.J. Eckel, and D.N. Brewer: J. Am. Ceram. Soc., 2008, vol. 91, pp. 519–26.

    Article  Google Scholar 

  3. J.D. Buckley and D. Dale Edie: Carbon–Carbon Materials and Composites, William Andrew, 1993.

  4. Y. Ye, H. Zhang, Y. Tong, and S. Bai: Ceram. Int., 2013, vol. 39, pp. 5477-83.

    Article  Google Scholar 

  5. F. Qian-Gang, L. He-Jun, S. Xiao-Hong, L. Ke-Zhi, W. Jian, and H. Min: Mater. Lett., 2006, vol. 60, pp. 431–34.

    Article  Google Scholar 

  6. C. Hu, Y. Niu, H. Li, M. Ren, X. Zheng, and J. Sun: J. Therm. Spray Technol., 2012, vol. 21, pp. 16–22.

    Article  Google Scholar 

  7. H. Jafari, N. Ehsani, S.A. Khalifeh-Soltani, and M. Jalaly: Appl. Surf. Sci., 2013, vol. 264, pp. 128–32.

    Article  Google Scholar 

  8. Z.J. Dong, S.X. Liu, X.K. Li, A. Westwood, G.M. Yuan, Z.W. Cui, and Y. Cong: Ceram. Int., 2015, vol. 41, pp. 797–811.

    Article  Google Scholar 

  9. L. Cheng, Y. Xu, L. Zhang, and X. Luan: Carbon, 2002, vol. 40, pp. 2229–34.

    Article  Google Scholar 

  10. Y. Xin, Z.-An SU, Q.-Zhong Huang, and L.-Yuan Chai: Trans. Nonferr. Metal. Soc. China, 2012, vol. 22, pp. 2997–3002.

    Article  Google Scholar 

  11. C. Sun, H-Jun Li, Q.-Gang Fu, H.-Liang Li, Y.-Jie Wang, and H. Wu: J. Therm. Spray Technol, 2013, vol. 22, pp. 525–30.

    Article  Google Scholar 

  12. W. Yang, L. Zhang, L. Cheng, Y. Liu, and W. Zhang: Appl. Compos. Mater., 2009, vol. 16, pp. 83–92.

    Article  Google Scholar 

  13. L. Li, H. Li, H. Lin, L. Zhuang, S. Wang, T. Feng, X. Yao, and Q. Fu: Surf. Coat. Technol., 2016, vol. 302, pp. 56–64.

    Article  Google Scholar 

  14. J.I. Kim, W.-J. Kim, D.J. Choi, J.Y. Park, and W.-S. Ryu: Carbon, 2005, vol. 43, pp. 1749–57.

    Article  Google Scholar 

  15. P.C. Kang, G.Q. Chen, B. Zhang, G.H. Wu, S. Mula, and C.C. Koch: Surf. Coat. Technol., 2011, vol. 206, pp. 305–11.

    Article  Google Scholar 

  16. A. Abdollahi, N. Ehsani, and Z. Valefi: Mater. Chem. Phys., 2016, vol. 182, pp. 49-61.

    Article  Google Scholar 

  17. Y. Niu, X. Zheng, C. Ding, H. Li, C. Hu, M. Ren, and J. Sun: Ceram. Int., 2011, vol. 37, pp. 1675-80.

    Article  Google Scholar 

  18. X. K. Li, L. Liu, Y.X. Zhang, S.H.D. Shen, S.H. Ge, and L.C. Ling: Carbon, 2001, vol. 39, pp. 159-65.

    Article  Google Scholar 

  19. H.-J. Choi and J.-G. Lee: J. Mater. Sci., 1995, vol. 30, pp. 1982–86.

    Article  Google Scholar 

  20. Y.-J. Lee and H.J. Joo: Surf. Coat. Technol., 2004, vol. 180, pp. 286–89.

    Article  Google Scholar 

  21. H. Jian-Feng, Z. Xie-Rong, L. He-Jun, X. Xin-Bo, and F. Ye-wei: Carbon, 2004, vol. 42, pp. 1517–21.

    Article  Google Scholar 

  22. ASM HandBook: Volume 3 Alloy Phase Diagram. ASM International, Materials Park, 1992.

    Google Scholar 

  23. J. Li, R. Luo, Y. Chen, Q. Xiang, C. Lin, P. Ding, N. An, and J. Cheng: Appl. Surf. Sci., 2008, vol. 255, pp. 1967–74.

    Article  Google Scholar 

  24. Z. Liu, Q. Guo, L. Liu, J. Shi, and G. Zhai: Surf. Coat. Technol., 2008, vol. 202, pp. 3094–99.

    Article  Google Scholar 

  25. F. Qian-Gang, L. He-Jun, L. Ke-Zhi, S. Xiao-Hong, H. Zhi-Biao, and H. Min: Carbon, 2006, vol. 44, pp. 1866–69.

    Article  Google Scholar 

  26. H. Li, Y. Wang, Q. Fu, and G. Sun: Surf. Coat. Technol., 2014, vol. 245, pp. 49–54.

    Article  Google Scholar 

  27. X. Lu, Y. Wei, H. Wang, J. Wen, J. Zhou, and J. Fan: J. Mater. Sci. Technol., 2014, vol. 30, pp. 1217–22.

    Article  Google Scholar 

  28. X. Li, P. Wu, and D. Zhu: Ceram. Int., 2014, vol. 40, pp. 4897–902.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Abdollahi.

Additional information

Manuscript submitted June 13, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahi, A., Ehsani, N. C/SiC Gradient Oxidation Protective Coating on Graphite by Modified Reactive Melt Infiltration Method: Effects of Processing Parameters on Transition Interface Thickness and High-Temperature Anti-oxidation Behavior. Metall Mater Trans A 48, 265–278 (2017). https://doi.org/10.1007/s11661-016-3813-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3813-z

Keywords

Navigation