Skip to main content
Log in

Modeling Hardenable Stainless Steels Using Calculated Martensite Start Temperatures in Thermodynamic Equilibrium Calculations

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this work, martensite start temperatures of several martensitic stainless steels containing different amounts and types of carbides were calculated by means of thermodynamic equilibrium calculations. Two different equations were introduced into the Thermo-Calc® software. The calculations were performed for the respective compositions at austenitization temperature and compared to martensite start temperatures measured using a quenching dilatometer. The purpose was to estimate hardenability and hardness of newly developed steels. Even though the equations used were determined empirically for specific alloying systems, general trends for the investigated steels were found to be reproduced very well. Thus, the comparison of martensite start temperatures of different steels in comparable alloying systems is highly effective for modeling new steels and for predicting their hardenability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. Berns and W. Theisen: Ferrous Materials—Steel and Cast Iron, 1st ed., Springer, Berlin, 2008.

    Google Scholar 

  2. DIN EN-10088-1: Stainless steels—Part 1: List of Stainless Steels, Beuth Verlag GmbH, Berlin, 2005.

  3. P. Lacombe, B. Baroux, and G. Beranger (Eds.): Stainless Steels, Les éditions de physique, Les Ulis Cedex, 1993.

    Google Scholar 

  4. V.G. Gavriljuk and H. Berns: High Nitrogen Steels, Springer, Berlin, 1999.

    Book  Google Scholar 

  5. V.G. Gavriljuk, A.L. Sozinov, A.G. Balanyuk, S.V. Grigoriev, O.A. Gubin, G.P. Kopitsa, A.I. Okorokov, and V.V. Runuv: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2195–99.

    Article  Google Scholar 

  6. V.G. Gavriljuk, B.D. Shanina and H. Berns: Acta Mater., 2000, vol. 48, pp. 3879–93.

    Article  Google Scholar 

  7. S. Riedner: Höchstfeste nichtrostende austenitische CrMn-Stähle mit (C + N), Dissertation, Bochum, 2010.

  8. B. Künne: Einführung in die Maschinenelemente, 2nd ed., Vieweg & Teubner, Wiesbaden, 2001.

    Book  Google Scholar 

  9. M. Seifert: Stickstoffhaltige nichtrostende martensitische Stähle—Entwicklung, Charakterisierung und großtechnische Umsetzung, Dissertation, Bochum, 2015.

  10. W. Steven and A.G. Haynes: J. Iron Steel Inst., 1956, vol. 183, pp. 349–59.

    Google Scholar 

  11. K.W. Andrews: J. Iron Steel Inst., 1965, vol. 203(7), pp. 721–27.

  12. D. Barbier: Adv. Eng. Mater., 2014, vol. 1, pp. 122–27.

    Article  Google Scholar 

  13. H.L. Lukas, S.G. Fries and B. Sundman: Computational Thermodynamics, Cambridge University Press, Cambridge, 2007.

    Book  Google Scholar 

  14. K. Lorenz and G. Medawar: Thyssenforschung, 1969, vol. 1, pp. 97–108.

    Google Scholar 

  15. H. Gräfen and D. Kuron: Mater. Corros., 1996, vol. 47(1), pp. 16–26.

    Article  Google Scholar 

  16. C.Y. Kung and J.J. Rayment: Metall. Mater. Trans. A, 1982, vol. 13A, pp. 328–31.

    Article  Google Scholar 

  17. N. Krasokha and H. Berns: HTM, 2011, vol. 66(3), pp. 150–64.

    Article  Google Scholar 

  18. Stahl-Eisen-Prüfblatt—SEP 1680: Aufstellung von Zeit-Temperatur-Umwandlunsgschaubildern für Eisenlegierungen, Verlag Stahleisen mbH, Düsseldorf, 1990.

  19. Stahl-Eisen-Prüfblatt—SEP 1681: Richtlinien für die Vorbereitung, Durchführung und Auswertung dilatometrischer Umwandlungsuntersuchungen an Eisenlegierungen, Verlag Stahleisen mbH, Düsseldorf, 1998.

  20. Dörrenberg Edelstahl GmbH: Werkstoffdatenblatt 1.4112, Dörrenberg Edelstahl GmbH, Engelskirchen, 08/04.

  21. H.-S. Yang and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2007, vol. 23(5), pp. 556–60.

    Article  Google Scholar 

  22. D.J. Dyson and B. Holmes: J. Iron Steel Inst., 1970, vol. 208(5), pp. 469–74.

  23. H.K.D.H. Bhadeshia, S.A. David, J.M. Vitek, and R.W. Reed: Mater. Sci. Technol., 1991, vol. 7(8), pp. 686–98.

    Article  Google Scholar 

  24. F. Heisterkamp and S.R. Keown: in: Symposium by the Ferrous Metallurgy Committee of The Metallurgical Society of AIME, M.G.H. Wells and L.W. Lherbier, eds., TMS-AIME, 1980, pp. 104–23.

  25. S. Karagöz and H.F. Fischmeister: Metall. Trans. A, 1988, vol. 19A, pp. 1395–1401.

    Article  Google Scholar 

  26. T. Sourmail and V. Smanio: Mater. Sci. Technol., 2013, vol. 7, pp. 883–88.

    Article  Google Scholar 

  27. T. Sourmail and C. Garcia-Mateo: Comput. Mater. Sci., 2005, vol. 2, pp. 213–18.

    Article  Google Scholar 

  28. H. K. D. H. Bhadeshia: Mater. Sci. Technol., 2013, vol. 7, p 889.

    Article  Google Scholar 

  29. T. Sourmail and V. Smanio: Mater. Sci. Technol., 2013, vol. 7, pp. 890–92.

    Article  Google Scholar 

  30. H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2014, vol. 4, p. 510.

    Article  Google Scholar 

  31. T. Sourmail and V. Smanio: Mater. Sci. Technol., 2014, vol. 4, pp. 511–12.

    Article  Google Scholar 

  32. H.K.D.H. Bhadeshia and R.W.K. Honeycombe: Steels, 3rd ed., Elsevier/Butterworth-Heinemann, Amsterdam, 2006.

  33. G.B. Olson and W.S. Owen (Ed.): Martensite, ASM International, Materials Park, OH, 1992.

    Google Scholar 

  34. Z. Szklarska-Smialowska: Pitting Corrosion of Metals, National Association of Corrosion Engineers, Houston, TX, 1986.

    Google Scholar 

  35. J.-Y. Park and Y.-S. Park: Mater. Sci. Eng. A, 2007, vol. 449–451, pp. 1131–34.

    Article  Google Scholar 

  36. E. Kunze: Korrosion und Korrosionsschutz, Wiley-VCH Verlag GmbH, Berlin, 2001.

    Book  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support by the Federal Ministry for Economic Affairs and Energy (BMWi) within the Joint Research Project No. 03ET1072D and the ZiM-Project (Zentrales Innovationsprogramm Mittelstand) Project No. KF2176305PK1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merlin Seifert.

Additional information

Manuscript submitted July 21, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seifert, M., Theisen, W. Modeling Hardenable Stainless Steels Using Calculated Martensite Start Temperatures in Thermodynamic Equilibrium Calculations. Metall Mater Trans A 47, 5953–5959 (2016). https://doi.org/10.1007/s11661-016-3805-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3805-z

Keywords

Navigation