Skip to main content

Mechanical Properties of the TiAl IRIS Alloy

Abstract

This paper presents a study of the mechanical properties at room and high temperature of the boron and tungsten containing IRIS alloy (Ti-48Al-2W-0.08B at. pct). This alloy was densified by Spark Plasma Sintering (SPS). The resultant microstructure consists of small lamellar colonies surrounded by γ regions containing B2 precipitates. Tensile tests are performed from room temperature to 1273 K (1000 °C). Creep properties are determined at 973 K (700 °C)/300 MPa, 1023 K (750 °C)/120 MPa, and 1023 K (750 °C)/200 MPa. The tensile strength and the creep resistance at high temperature are found to be very high compared to the data reported in the current literature while a plastic elongation of 1.6 pct is preserved at room temperature. A grain size dependence of both ductility and strength is highlighted at room temperature. The deformation mechanisms are studied by post-mortem analyses on deformed samples and by in situ straining experiments, both performed in a transmission electron microscope. In particular, a low mobility of non-screw segments of dislocations at room temperature and the activation of a mixed-climb mechanism during creep have been identified. The mechanical properties of this IRIS alloy processed by SPS are compared to those of other TiAl alloys developed for high-temperature structural applications as well as to those of similar tungsten containing alloys obtained by more conventional processing techniques. Finally, the relationships between mechanical properties and microstructural features together with the elementary deformation mechanisms are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    H. Clemens and S. Mayer: Adv. Eng. Mater. Des. 2013, vol 15, no. 4, pp. 191–215.

    Article  Google Scholar 

  2. 2.

    F. Appel, J. Paul, M. Oehring: Gamma Titanium Aluminides: Science and Technology, Wiley, New York, 2011.

    Book  Google Scholar 

  3. 3.

    S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro and C Badini: Intermetallics 2011, vol. 19, pp. 776-781,.

    Article  Google Scholar 

  4. 4.

    A. Couret, G. Molénat, J. Galy and M. Thomas: Intermetallics 2008, vol. 16 pp. 1134-1141.

    Article  Google Scholar 

  5. 5.

    A. Couret, J.P. Monchoux, M. Thomas, and T. Voisin: Procédé de fabrication d’une pièce en alliage en titane-aluminium, Patent WO2014199082 A1, 11 June 2013.

  6. 6.

    T. Voisin, P. Monchoux, Perrut M. and A. Couret: Intermetallics 2016, vol. 71, pp. 88-97.

    Article  Google Scholar 

  7. 7.

    T. Voisin, L. Durand, N. Karnatak, S. Le Gallet, M. Thomas, Y. Le Berre, J.F Castagne, and A. Couret: J. Mater. Process. Technol. 2013, vol. 213, pp.269–278.

    Article  Google Scholar 

  8. 8.

    K.S. Chan, D. Shih: Metallurgical and Materials Transactions A. 1997 vol. 28 pp.79-90.

    Article  Google Scholar 

  9. 9.

    F. Appel, R. Wagner: Materials Science and Engineering 1998, vol. R22 pp. 187-268.

    Article  Google Scholar 

  10. 10.

    B. Viguier, K.J. Hemker, J. Bonneville, F. Louchet and J.L. Martin: Phil. Mag. A. 1995 vol.71 pp. 1295-1132.

    Article  Google Scholar 

  11. 11.

    S. Sriram, D.M. Dimiduk, P.M. Hazzledine and V.K. Vasudevan, Phil. Mag. A. 1997 vol.76 pp. 965-993.

    Article  Google Scholar 

  12. 12.

    A. Couret: Phil. Mag. A. 1999 vol. 79 pp.1977-1994.

    Article  Google Scholar 

  13. 13.

    J.B. Singh, M. Molénat, M. Sudraraman, S. Banerjee, G. Saada, P. Veyssière and A. Couret: Phil. Mag. Letters, 2006 vol.86 pp. 47-60.

    Article  Google Scholar 

  14. 14.

    A. Couret, J. Crestou, S. Farenc, G. Molénat, A. Coujou, D. Caillard, Microsc. Microanal. Microstruct. 1993, vol. 4 pp. 153-170.

    Article  Google Scholar 

  15. 15.

    A. Couret, Intermetallics 2001 vol. 9 pp.899-906.

    Article  Google Scholar 

  16. 16.

    T. Voisin: Exploration de la voie SPS pour la fabrication d’aubes de turbine pour l’aéronautique : développement d’un alliage TiAl performant et densification de préformes, Thèse de l’Université Toulouse 3 Paul Sabatier 18 September 2014.

  17. 17.

    J. Malaplate, D. Caillard, and A. Couret: Phil. Mag. A, 2004, vol. 84, pp. 3671–3687.

    Article  Google Scholar 

  18. 18.

    M. Lamirand, J.L. Bonnantien, G. Ferrière, S. Guérin, and J.P. Chevalier: Metall. Mater. Trans. A. 2006, vol. 37, pp. 2369-2378.

    Article  Google Scholar 

  19. 19.

    F. Perdrix, M.F. Trichet, J.L. Bonnentien, M. Cornet, and J. Bigot: Intermetallics 2001, vol. 9, pp. 147-155.

    Article  Google Scholar 

  20. 20.

    T. Klein, M. Schachermayer, F. Mendez-Martin, T. Schöberl, B. Rashkova, H. Clemens and S. Mayer: Acta Mat 2015 vol 94 pp. 205-213.

    Article  Google Scholar 

  21. 21.

    C.T. Liu, J.L. Wright and S.C. Deevi: Materials Science and Engineering A 2002 vol. 329-331 pp. 416-423.

    Article  Google Scholar 

  22. 22.

    M. Yamaguchi, H. Zhu, M. Suzuki, K. Maruyama and F. Appel: Materials Science and Engineering A, 2008 vol. 517 pp.483-484.

    Google Scholar 

  23. 23.

    F. Appel, M. Oehring, and J. Paul: Adv. Eng. Mater. 2006, vol. 8, no. 5 pp. 371–376.

    Article  Google Scholar 

  24. 24.

    F. Picca, M. Véron and Y Bréchet:Matériaux & Techniques 2004 vol.1-2 pp.59-68.

    Article  Google Scholar 

  25. 25.

    J. Lapin, M. Nazmy: Materials Science and Engineering A 2004 vol. 380 pp. 298-307.

    Article  Google Scholar 

  26. 26.

    H. Jabbar, J.P. Monchoux, M. Thomas, F. Pyczak, A. Couret: Intermetallics 2014 vol.46 pp. 1-3.

    Article  Google Scholar 

  27. 27.

    W.J. Zhang and S.C. Deevi: Materials Science and Engineering A 2003 vol. A362 pp. 280-291.

    Google Scholar 

  28. 28.

    J.N. Wang, T.G. Nieh: Acta Materiala 1998 vol. 46 pp.1887-1901.

    Article  Google Scholar 

  29. 29.

    J.N. Wang, J. Zhu, J.S. Wu, X.W. Du: Acta Materiala 2002 vol. 50 pp.1307-1318.

    Article  Google Scholar 

  30. 30.

    T.A. Partahasarathy, M. Keller, M.G. Mendiratta: Scripta Mater., 1998, vol. 38, pp. 1025–1031.

    Article  Google Scholar 

  31. 31.

    K. Maruyama, R. Yamamoto, H. Nakakuki and N. Fujitsuna: Materials Science and Engineering A 1997 vol. 240 pp.419-428.

    Article  Google Scholar 

  32. 32.

    J. Lapin: Scripta Materiala 2004 vol. 50 pp. 261-265.

    Article  Google Scholar 

  33. 33.

    W.J. Zhang and S.C. Deevi: Intermetallics 2002 vol. 10 pp. 603-611.

    Article  Google Scholar 

  34. 34.

    T. Voisin, J.P. Monchoux, H. Hantcherli, S. Mayer, H. Clemens and A. Couret: Acta Mat 2014 vol. 73 pp. 107-115.

    Article  Google Scholar 

  35. 35.

    J.S. Luo, T. Voisin, J.P. Monchoux and A. Couret: Intermetallics 2013 vol. 36 pp. 12-20.

    Article  Google Scholar 

  36. 36.

    H. Zhu, D. Seo D., K. Maruyama K. and Au P.: Materials Transactions 2004 vol. 45(12) pp. 3343-3348.

    Article  Google Scholar 

  37. 37.

    J.D.H Paul, M. Oehring, R. Hoppe, and F. Appel: in Gamma Titanium Aluminides 2003, Y.W. Kim, H. Clemens, and A.H. Rosemberg, eds., TMS, Warrendale, PA, 2003, pp. 403–08.

Download references

Acknowledgments

This study has been conducted in the framework of the cooperative project “IRIS-ANR-09-MAPR-0018-06” supported by the French Agence Nationale de la Recherche (ANR), which is acknowledged. The CEMES group thanks the PNF2 for providing SPS facilities (Plateforme Nationale de Frittage Flash/CNRS in Toulouse, France).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alain Couret.

Additional information

Manuscript submitted April 8, 2016.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Voisin, T., Monchoux, JP., Thomas, M. et al. Mechanical Properties of the TiAl IRIS Alloy. Metall Mater Trans A 47, 6097–6108 (2016). https://doi.org/10.1007/s11661-016-3801-3

Download citation

Keywords

  • Spark Plasma Sinter
  • Creep Strength
  • TiAl Alloy
  • Electron Beam Melting
  • Minimum Creep Rate