Metallurgical and Materials Transactions A

, Volume 47, Issue 12, pp 6097–6108 | Cite as

Mechanical Properties of the TiAl IRIS Alloy

  • Thomas Voisin
  • Jean-Philippe Monchoux
  • Marc Thomas
  • Christophe Deshayes
  • Alain Couret


This paper presents a study of the mechanical properties at room and high temperature of the boron and tungsten containing IRIS alloy (Ti-48Al-2W-0.08B at. pct). This alloy was densified by Spark Plasma Sintering (SPS). The resultant microstructure consists of small lamellar colonies surrounded by γ regions containing B2 precipitates. Tensile tests are performed from room temperature to 1273 K (1000 °C). Creep properties are determined at 973 K (700 °C)/300 MPa, 1023 K (750 °C)/120 MPa, and 1023 K (750 °C)/200 MPa. The tensile strength and the creep resistance at high temperature are found to be very high compared to the data reported in the current literature while a plastic elongation of 1.6 pct is preserved at room temperature. A grain size dependence of both ductility and strength is highlighted at room temperature. The deformation mechanisms are studied by post-mortem analyses on deformed samples and by in situ straining experiments, both performed in a transmission electron microscope. In particular, a low mobility of non-screw segments of dislocations at room temperature and the activation of a mixed-climb mechanism during creep have been identified. The mechanical properties of this IRIS alloy processed by SPS are compared to those of other TiAl alloys developed for high-temperature structural applications as well as to those of similar tungsten containing alloys obtained by more conventional processing techniques. Finally, the relationships between mechanical properties and microstructural features together with the elementary deformation mechanisms are discussed.


Spark Plasma Sinter Creep Strength TiAl Alloy Electron Beam Melting Minimum Creep Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study has been conducted in the framework of the cooperative project “IRIS-ANR-09-MAPR-0018-06” supported by the French Agence Nationale de la Recherche (ANR), which is acknowledged. The CEMES group thanks the PNF2 for providing SPS facilities (Plateforme Nationale de Frittage Flash/CNRS in Toulouse, France).


  1. 1.
    H. Clemens and S. Mayer: Adv. Eng. Mater. Des. 2013, vol 15, no. 4, pp. 191–215.CrossRefGoogle Scholar
  2. 2.
    F. Appel, J. Paul, M. Oehring: Gamma Titanium Aluminides: Science and Technology, Wiley, New York, 2011.CrossRefGoogle Scholar
  3. 3.
    S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro and C Badini: Intermetallics 2011, vol. 19, pp. 776-781,.CrossRefGoogle Scholar
  4. 4.
    A. Couret, G. Molénat, J. Galy and M. Thomas: Intermetallics 2008, vol. 16 pp. 1134-1141.CrossRefGoogle Scholar
  5. 5.
    A. Couret, J.P. Monchoux, M. Thomas, and T. Voisin: Procédé de fabrication d’une pièce en alliage en titane-aluminium, Patent WO2014199082 A1, 11 June 2013.Google Scholar
  6. 6.
    T. Voisin, P. Monchoux, Perrut M. and A. Couret: Intermetallics 2016, vol. 71, pp. 88-97.CrossRefGoogle Scholar
  7. 7.
    T. Voisin, L. Durand, N. Karnatak, S. Le Gallet, M. Thomas, Y. Le Berre, J.F Castagne, and A. Couret: J. Mater. Process. Technol. 2013, vol. 213, pp.269–278.CrossRefGoogle Scholar
  8. 8.
    K.S. Chan, D. Shih: Metallurgical and Materials Transactions A. 1997 vol. 28 pp.79-90.CrossRefGoogle Scholar
  9. 9.
    F. Appel, R. Wagner: Materials Science and Engineering 1998, vol. R22 pp. 187-268.CrossRefGoogle Scholar
  10. 10.
    B. Viguier, K.J. Hemker, J. Bonneville, F. Louchet and J.L. Martin: Phil. Mag. A. 1995 vol.71 pp. 1295-1132.CrossRefGoogle Scholar
  11. 11.
    S. Sriram, D.M. Dimiduk, P.M. Hazzledine and V.K. Vasudevan, Phil. Mag. A. 1997 vol.76 pp. 965-993.CrossRefGoogle Scholar
  12. 12.
    A. Couret: Phil. Mag. A. 1999 vol. 79 pp.1977-1994.CrossRefGoogle Scholar
  13. 13.
    J.B. Singh, M. Molénat, M. Sudraraman, S. Banerjee, G. Saada, P. Veyssière and A. Couret: Phil. Mag. Letters, 2006 vol.86 pp. 47-60.CrossRefGoogle Scholar
  14. 14.
    A. Couret, J. Crestou, S. Farenc, G. Molénat, A. Coujou, D. Caillard, Microsc. Microanal. Microstruct. 1993, vol. 4 pp. 153-170.CrossRefGoogle Scholar
  15. 15.
    A. Couret, Intermetallics 2001 vol. 9 pp.899-906.CrossRefGoogle Scholar
  16. 16.
    T. Voisin: Exploration de la voie SPS pour la fabrication d’aubes de turbine pour l’aéronautique : développement d’un alliage TiAl performant et densification de préformes, Thèse de l’Université Toulouse 3 Paul Sabatier 18 September 2014.Google Scholar
  17. 17.
    J. Malaplate, D. Caillard, and A. Couret: Phil. Mag. A, 2004, vol. 84, pp. 3671–3687.CrossRefGoogle Scholar
  18. 18.
    M. Lamirand, J.L. Bonnantien, G. Ferrière, S. Guérin, and J.P. Chevalier: Metall. Mater. Trans. A. 2006, vol. 37, pp. 2369-2378.CrossRefGoogle Scholar
  19. 19.
    F. Perdrix, M.F. Trichet, J.L. Bonnentien, M. Cornet, and J. Bigot: Intermetallics 2001, vol. 9, pp. 147-155.CrossRefGoogle Scholar
  20. 20.
    T. Klein, M. Schachermayer, F. Mendez-Martin, T. Schöberl, B. Rashkova, H. Clemens and S. Mayer: Acta Mat 2015 vol 94 pp. 205-213.CrossRefGoogle Scholar
  21. 21.
    C.T. Liu, J.L. Wright and S.C. Deevi: Materials Science and Engineering A 2002 vol. 329-331 pp. 416-423.CrossRefGoogle Scholar
  22. 22.
    M. Yamaguchi, H. Zhu, M. Suzuki, K. Maruyama and F. Appel: Materials Science and Engineering A, 2008 vol. 517 pp.483-484.Google Scholar
  23. 23.
    F. Appel, M. Oehring, and J. Paul: Adv. Eng. Mater. 2006, vol. 8, no. 5 pp. 371–376.CrossRefGoogle Scholar
  24. 24.
    F. Picca, M. Véron and Y Bréchet:Matériaux & Techniques 2004 vol.1-2 pp.59-68.CrossRefGoogle Scholar
  25. 25.
    J. Lapin, M. Nazmy: Materials Science and Engineering A 2004 vol. 380 pp. 298-307.CrossRefGoogle Scholar
  26. 26.
    H. Jabbar, J.P. Monchoux, M. Thomas, F. Pyczak, A. Couret: Intermetallics 2014 vol.46 pp. 1-3.CrossRefGoogle Scholar
  27. 27.
    W.J. Zhang and S.C. Deevi: Materials Science and Engineering A 2003 vol. A362 pp. 280-291.Google Scholar
  28. 28.
    J.N. Wang, T.G. Nieh: Acta Materiala 1998 vol. 46 pp.1887-1901.CrossRefGoogle Scholar
  29. 29.
    J.N. Wang, J. Zhu, J.S. Wu, X.W. Du: Acta Materiala 2002 vol. 50 pp.1307-1318.CrossRefGoogle Scholar
  30. 30.
    T.A. Partahasarathy, M. Keller, M.G. Mendiratta: Scripta Mater., 1998, vol. 38, pp. 1025–1031.CrossRefGoogle Scholar
  31. 31.
    K. Maruyama, R. Yamamoto, H. Nakakuki and N. Fujitsuna: Materials Science and Engineering A 1997 vol. 240 pp.419-428.CrossRefGoogle Scholar
  32. 32.
    J. Lapin: Scripta Materiala 2004 vol. 50 pp. 261-265.CrossRefGoogle Scholar
  33. 33.
    W.J. Zhang and S.C. Deevi: Intermetallics 2002 vol. 10 pp. 603-611.CrossRefGoogle Scholar
  34. 34.
    T. Voisin, J.P. Monchoux, H. Hantcherli, S. Mayer, H. Clemens and A. Couret: Acta Mat 2014 vol. 73 pp. 107-115.CrossRefGoogle Scholar
  35. 35.
    J.S. Luo, T. Voisin, J.P. Monchoux and A. Couret: Intermetallics 2013 vol. 36 pp. 12-20.CrossRefGoogle Scholar
  36. 36.
    H. Zhu, D. Seo D., K. Maruyama K. and Au P.: Materials Transactions 2004 vol. 45(12) pp. 3343-3348.CrossRefGoogle Scholar
  37. 37.
    J.D.H Paul, M. Oehring, R. Hoppe, and F. Appel: in Gamma Titanium Aluminides 2003, Y.W. Kim, H. Clemens, and A.H. Rosemberg, eds., TMS, Warrendale, PA, 2003, pp. 403–08.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Thomas Voisin
    • 1
    • 3
  • Jean-Philippe Monchoux
    • 1
  • Marc Thomas
    • 2
  • Christophe Deshayes
    • 1
  • Alain Couret
    • 1
  1. 1.CNRS; CEMES (Centre d’Elaboration de Matériaux et d’Etudes Structurales)ToulouseFrance
  2. 2.ONERA/DMSMChâtillon CedexFrance
  3. 3.Department of Materials Science and EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations