Skip to main content
Log in

Decomposition Reaction of Metastable M2C Carbide in a Multi-Component Semi-High-Speed Steel

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The metastable M2C carbide in a multi-component semi-high-speed steel shows an in situ decomposition during heat treatment. M2C carbides transform themselves into an aggregate of three secondary carbides (M6C, MC, M7C3) at the M2C carbide/γ-Fe matrix interface through the diffusion of various alloying elements. The content of the decomposition products decreases in the order of M6C, MC, and M7C3. The Fe-rich M6C is considered to be the η 2-type carbides of (Cr, V, Fe)4(Mo, W)2C, the MC consists primarily of V as the crystallized carbide does, and the M7C3 with 70 at. pct of Cr and Fe in total is formed only during heat treatment but not during solidification. At the heat treatment temperature of 1273 K (1000 °C), a new approximate reaction equation of M2C + 0.052γ-Fe → 0.687M6C + 0.044M7C3 + 0.320MC is proposed based on the measurement of the composition of carbides; moreover, a modified prediction model of transformation ratio of M2C carbide is obtained according to the DSC experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. C. Gaspard, D. Batazzi, T. Adams and J. Ballani: MS&T 2004 Conference Proceedings, New Orleans, Sep. 26–29, 2004, pp. 323–27.

  2. Y. Sano, T. Hattori and M. Haga: ISIJ Int., 1992, vol. 32, pp. 1194–201.

    Article  Google Scholar 

  3. N.F. Garza-Montes-de-Oca and W.M. Rainforth: Wear, 2009, vol. 267, pp. 441–48.

    Article  Google Scholar 

  4. W.F.H. Zamri, P.B. Kosasih, A.K. Tieu, Q. Zhu and H. Zhu: J. Mater. Process. Technol., 2012, vol. 212, pp. 2597–608.

    Article  Google Scholar 

  5. J. Lecomte-Beckers, M. Sinnaeve and J.T. Tchuindjang: AISTech Proceeding 2011, Indianapolis, IN, May, 2011, pp. 1771–82.

  6. J.T. Tchuindjang, M. Sinnaeve and J. Lecomte-Beckers: Abrasion 2011, Liege, Belgium, Aug. 21–24, 2011, pp. 61–75.

  7. G.F. Sun, K. Wang, R. Zhou, A.X. Feng and W. Zhang: Mater. Des., 2015, vol. 65, pp. 606–16.

    Article  Google Scholar 

  8. G. Herranz, A. Romero, V. de Castro and G.P. Rodríguez: J. Mater. Proc. Technol., 2013, vol. 213, pp. 2065–2073.

    Article  Google Scholar 

  9. L. Bourithis and G.D. Papadimitriou: Mater. Sci. Eng. A, 2003, vol. 361, pp. 165–72.

  10. K.C. Hwang, S. Lee and H.C. Lee: Mater. Sci. Eng. A, 1998, vol. 254, pp. 282–95.

    Article  Google Scholar 

  11. J.T. Tchuindjang and J. Lecomte-Beckers: Int. J. Fatigue, 2007, vol. 29, pp. 713–28.

    Article  Google Scholar 

  12. E.S. Lee, W.J. Park, J.Y. Jung and S. AHN. Metall: Mater. Trans. A., 1998, vol. 29, pp. 1395–404.

  13. X.F. Zhou, F. Fang, J.Q. Jiang, W.L. Zhu and H.X. Xu: Mater. Sci. Technol., 2014, vol. 30, pp. 116–22.

    Article  Google Scholar 

  14. M. Hashimoto O. Kubo and Y. Matsubara: ISIJ Int., 2004, vol. 44, pp. 372–80.

    Article  Google Scholar 

  15. L. Bourithis and G.D. Papadimitriou: Mater. Sci. Eng. A, 2003, vol. 361, pp. 165–72.

  16. A. Wiengmoon, T. Chairuangsri and J.T.H. Pearace: ISIJ Int., 2004, vol. 44, pp. 396–403.

    Article  Google Scholar 

  17. H. Fredriksson, M. Hillert and M. Nica: Scand. J. Metall., 1979, vol. 8, pp. 115–22.

    Google Scholar 

  18. P.Ding, G. Shi and S. Zhou: Metall. Mater. Trans. A., 1993, vol. 24, pp. 1265–72.

    Article  Google Scholar 

  19. Y.K. Luan, N.N. Song, Y.L. Bai, X.H. Kang and D.Z. Li. J. Mater: Process. Technol., 2010, vol. 210, pp. 536-541.

    Article  Google Scholar 

  20. M Hashimoto, T Tanaka, T Inoue, M Yamashita and R. Terakado: ISIJ Int., 2002, vol. 42, pp. 982–9.

    Article  Google Scholar 

  21. M. Boccalini and H. Goldenstein: Int. Mat. Rev., 2001, vol. 46, pp. 92–5.

    Article  Google Scholar 

  22. M. Hashimoto, O. Kubo and Y. Matsubara: ISIJ Int., 2004, vol. 44, pp. 372–80.

    Article  Google Scholar 

  23. M.J. Wang, L. Chen, Z.X. Wang and E. Bao: J. Rare Earths, 2012, vol. 30, pp. 84–9.

    Article  Google Scholar 

  24. S.Raju, B. Ganesh, A.K. Rai, R. Mythili, S. Saroja and B. Raj: J. Nucl. Mater., 2010, vol. 405, 59–69.

    Article  Google Scholar 

  25. X. Li, Z. Du, H. Fu, Z. Feng, and H. Zhao: Mat.-wiss. u. Werkstofftech., 2010, vol. 41, 170–6.

    Article  Google Scholar 

  26. E. S. Lee, W.J. Park, J.Y. Jung, and S. Ahn: Metall. Mater. Trans. A., 1998, vol. 29, pp. 1395-404.

    Article  Google Scholar 

Download references

The authors are grateful to the National Natural Science Foundation of China (Grant No. 51101136), the Natural Science Foundation-Steel and Iron Foundation of Hebei Province, China (Grant No. E2016203284), and the College Science and Technology Research Project of Hebei Province, China (Grant No. QN2014107) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Chen.

Additional information

Manuscript submitted January 5, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Pei, J., Li, F. et al. Decomposition Reaction of Metastable M2C Carbide in a Multi-Component Semi-High-Speed Steel. Metall Mater Trans A 47, 5662–5669 (2016). https://doi.org/10.1007/s11661-016-3795-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3795-x

Keywords

Navigation