Skip to main content
Log in

From Modeling of Plasticity in Single-Crystal Superalloys to High-Resolution X-rays Three-Crystal Diffractometer Peaks Simulation

  • Symposium: Neutron and X-Ray Studies of Advanced Materials VIII
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The dislocation-based modeling of the high-temperature creep of two-phased single-crystal superalloys requires input data beyond strain vs time curves. This may be obtained by use of in situ experiments combining high-temperature creep tests with high-resolution synchrotron three-crystal diffractometry. Such tests give access to changes in phase volume fractions and to the average components of the stress tensor in each phase as well as the plastic strain of each phase. Further progress may be obtained by a new method making intensive use of the Fast Fourier Transform, and first modeling the behavior of a representative volume of material (stress fields, plastic strain, dislocation densities…), then simulating directly the corresponding diffraction peaks, taking into account the displacement field within the material, chemical variations, and beam coherence. Initial tests indicate that the simulated peak shapes are close to the experimental ones and are quite sensitive to the details of the microstructure and to dislocation densities at interfaces and within the soft γ phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. [1] A. Jacques and P. Bastie: Philos. Mag., 2003, vol. 83, pp. 3005-27.

    Article  Google Scholar 

  2. [2] L. Dirand, A. Jacques, J. Ph. Chateau-Cornu, T. Schenk, O. Ferry, and P. Bastie: Philos. Mag. 2012, vol. 93, pp. 1384-1412.

    Article  Google Scholar 

  3. J. B. le Graverend, A. Jacques, J. Cormier, O. Ferry, T. Schenk, J. Mendez: Acta Mater., 2015, vol. 84, pp 65-79

    Article  Google Scholar 

  4. [4] M. Wilkens: Kristall und Technik, 1976, vol. 11, pp. 1159-1169.

    Article  Google Scholar 

  5. [5] T. Ungár, J. Gubicza, G. Ribárik and A. Borbély: J. Appl. Cryst., 2001, vol. 34, pp. 298-310.

    Article  Google Scholar 

  6. [6] I. Groma:, Phys. Rev. B, 1998, vol. 57, pp. 7535-7542.

    Article  Google Scholar 

  7. L. Balogh, G. Ribarik, and T. Ungar: J. Appl. Phys., 2006, vol. 100, p. 023512.

    Article  Google Scholar 

  8. K. Huang: Proc. R. Soc. Lond. A, 1947, vol. 90, pp. 102-117.

    Article  Google Scholar 

  9. [9] B. C. Larson and W. Schmatz: Phys. Rev. B, 1974, vol. 10, 2307-2314.

    Article  Google Scholar 

  10. [10] R. I. Barabash, J. S. Chung and M. F. Thorpe: J. Phys.: Condens. Matter, 1999,11, pp. 3075-3090.

    Google Scholar 

  11. C.M. Weisbrook, V.S. Gopalaratnamb, A.D. Krawitza: Mater. Sci. Eng. A, 1995, vol. 201, pp. 134-142.

    Article  Google Scholar 

  12. [12] M. P. Miller, and P R Dawson: Curr. Opin. Solid State Mater. Sci., 2014, vol. 18, 5, pp. 286-299.

    Article  Google Scholar 

  13. [13] E. Demir, J. S. Park, M. P. Miller, P.R. Dawson: Comput. Methods Appl. Mech. Eng., 2013, vol. 265, 77, pp. 120-135.

    Article  Google Scholar 

  14. [14] S. L.Wong, J. S. Park, M. P. Miller, P. R. Dawson: Comput. Mater. Sci., 2013, vol. 77, pp. 456-466.

    Article  Google Scholar 

  15. F. Hofmann, S. Keegan, A. M. Korsunsky: Mater. Lett., 2012, vol.89, pp. 66-69.

    Article  Google Scholar 

  16. [16] X. Song, F. Hofmann, and A. M. Korsunsky: Philos. Mag., 2010, vol. 90, 30, pp. 3999-4011.

    Article  Google Scholar 

  17. [17] R. M. Suter, D. Hennessy, C. Xiao, U. Lienert: Rev. Sci. Instrum., 2006, vol. 77, 123905 doi:10.1063/1.2400017.

    Article  Google Scholar 

  18. [18] N. Vaxelaire, H. Proudhon, S. Labat, C. Kirchlechner, J. Keckes, V. Jaques, S. Ravy, S. Forest, O. Thomas: New J. Phys, 2010, vol. 12, 035018.

    Article  Google Scholar 

  19. I. A. Vartanyants and O. M. Yefanov: arXiv:1304.5335v1 [cond-mat.mes-hall], 2013

  20. T. Mura: Micromechanics of defects in solids”, Mechanics of Elastic and Inelastic Solids, 1987, vol. 3, ISSN 0924-2163 Springer Netherlands, ISBN 978-90-247-3256-2. DOI 10.1007/978-94-009-3489-4, pp. 10–21.

  21. [21] H. Moulinec, P. Suquet: Comput. Methods Appl. Mech. Eng., 1998, vol.157, pp. 69-94.

    Article  Google Scholar 

  22. [22] J. C. Michel, H. Moulinec, P. Suquet: Comput. Methods Appl. Mech. Eng., 1999, vol. 172, pp.109-143.

    Article  Google Scholar 

  23. [23] B. S. Anglin, R. A. Lebensohn, A. D. Rollett: Comput. Mater. Sci., 2014, vol. 87, pp. 209–217.

    Article  Google Scholar 

  24. [24] S. Brisard, and L. Dormieux, Comput. Mater. Sci., 2010, vol. 49, pp. 663–671.

    Article  Google Scholar 

  25. [25] S. Berbenni, V. Taupin, K. S. Djaka, and C. Fressengeas: Int. J. Solids Struct., 2014, vol. 51, pp. 4157-4175.

    Article  Google Scholar 

  26. F. R. N. Nabarro, F. de Villiers: in Physics of Creep And Creep-Resistant Alloys, 1995, CRC Press. ISBN-13: 9780850668520 ISBN: 0850668522.

  27. Roger C. Reed: The Superalloys: Fundamentals and Applications, 2008, Cambridge University Press, ISBN-10: 0521070112 ISBN-13: 978-0521070119.

  28. A. Buchon: PhD Thesis, 1990, Université de Rouen.

  29. [29] D. Blavette, A. Bostel: Acta Metall., 1984, vol. 32, 5, pp. 811–816.

    Article  Google Scholar 

  30. [30] K. D. Liss, A. Royer, T. Tschentscher, P. Suortti, A. P. Williams: J. Synchrotron Radiat., 1998, vol. 5, 2, pp. 82-89.

    Article  Google Scholar 

  31. [31] P. Suortti and T. Tschentscher: Rev. Sci. Instrum., 1995, vol. 66, pp.1798-1801.

    Article  Google Scholar 

  32. [32] R. Bouchard, D. Hupfeld, T. Lippmann, J. Neuefeind, H.-B. Neumann, H. F. Poulsen, U. Rütt, T. Schmidt, J. R. Schneider, J. Süssenbach and M. von Zimmermann: J. Synchrotron Radiat, 1998, vol. 5, 2, p. 90-101.

    Article  Google Scholar 

  33. A. Authier: Dynamical theory of X-Ray Diffraction, (IUCR Monographs on Crystal) 2004, Oxford University Press; Revised edition, ISBN-13: 978-0198528920), p. 447.

  34. [34] H. A. Kuhn, H. Biermann, T. Ungár, and H. Mughrabi: Acta Metall. Mater., 1991, 39, 11, pp. 2783-2794.

    Article  Google Scholar 

  35. [35] H. Biermann, M. Strehler, H. Mughrabi: Metall. Mater. Trans. A, 1996, Vol. 27, 4, pp 1003–1014.

    Article  Google Scholar 

  36. [36] J. F. Ganghoffer, A. Hazotte, S. Denis, A. Simon: Scripta Metal. Mater., 1991, 25, pp. 2491-2496.

    Article  Google Scholar 

  37. [37] L. Müller, T. Link, M. Feller-Kiepmeier: Scripta Metal. Mater., 1992, vol. 26, pp. 1297-1302.

    Article  Google Scholar 

  38. A. Jacques, L. Dirand, J. P. Chateau, T. Schenk, O. Ferry, and P. Bastie: Adv. Mater. Res. 2010, vol. 278, pp. 48-53.

    Article  Google Scholar 

  39. [39] P. Strunz, R. Gilles, D. Mukherji, A. Wiedenmann, R. P. Wahi, and J. Zrník: Mater. Struct. Chem., Biol., Phys. Technol., 1999, vol. 6, 2, pp.91-5.

    Google Scholar 

  40. [40] Q. Li and P. Anderson: Journal of Elasticity, 2001, vol. 64, pp. 237-245.

    Article  Google Scholar 

  41. T. Gnaupel-Herold, P. C. Brand, and H. J. Prask: J. Appl. Crystallogr., 1998, vol. 31, pp. 929-35.

    Article  Google Scholar 

  42. F. Willot and Y. P. Pellegrin: arXiv:0802.2488v1, 2008.

  43. [43] S. Kaßbohm, W. H. Müller: Technishe Mechanik, 2003, vol. 23, 2-4, pp.178-83.

    Google Scholar 

  44. F. Diologent, P. Caron, T. d’Almeida, A. Jacques, P. Bastie: Nuclear Institude and Methods B (E-MRS 2002 Symposium on Synchrotron Radiation and Materials Science, 2003, vol. 200, pp. 346–351.

  45. [45] X. Milhet, M. Arnoux, J. Cormier, J. Mendez, C. Tromas: Mater. Sci. Eng. A, 2012, Vol. 546, pp. 139-145.

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank S. Berbenni (LEM3 Metz) for an introduction to FFT methods in elasticity and further useful discussions, Jonathan Cormier for comments on the metallurgy of superalloys, Martin Von Zimmermann and Uta Rütt (DESY), for their help with the triple-crystal diffractometer at DESY (BW5 and P07), Thomas Schenk and Mohamed Biskri for their contribution to the in situ experiments. The specimens were provided by A. Longuet (SNECMA, groupe SAFRAN). The travel costs of the experiments at DESY were funded by within the initiative “CALIPSO: EU Support of Access to Synchrotrons/FELs in Europe.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Jacques.

Additional information

Manuscript submitted May 8, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacques, A. From Modeling of Plasticity in Single-Crystal Superalloys to High-Resolution X-rays Three-Crystal Diffractometer Peaks Simulation. Metall Mater Trans A 47, 5783–5797 (2016). https://doi.org/10.1007/s11661-016-3793-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3793-z

Keywords

Navigation