Skip to main content
Log in

Inhibitive Effect of Molybdate Ions on the Electrochemical Behavior of Steel Rebar in Simulated Concrete Pore Solution

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Several compounds tested as corrosion inhibitors have proven to possess good effectiveness in protection of steel rebar in concrete. However, most of them are considered as pollutant compounds, which limits their use. The aim of this work is to investigate the inhibitive effect of sodium molybdate, which is considered as a nonpollutant compound, against pitting corrosion of steel rebar in simulated concrete pore solution. Corrosion behaviors of steel in different solutions were studied by means of corrosion potential, potentiodynamic polarization, and electrochemical impedance spectroscopy. The results indicate that the addition of sodium molybdate to the chlorinated solution decreases significantly the corrosion rate of steel. Due to its passivating character, the sodium molybdate inhibitor promotes the formation of a stable passive layer on the surface of steel, acting as a physical barrier against chloride ions, on one hand, and consolidating the passivation mechanism of steel, on the other. The optimal inhibition rate is given by the concentration of molybdate ions, corresponding to a [MoO4 2−]/[Cl] that is equal to 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Bensabra and N. Azzouz: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5703–10.

    Article  Google Scholar 

  2. L. Yohai, M. Vázquez, and M.B. Valcarce: Electrochim. Acta, 2013, vol. 102, pp. 88–96.

    Article  Google Scholar 

  3. M.F. Montemor, A.M.P. Simões, and M.G.S. Ferreira: Cem. Conc. Comp., 2003, vol. 25, p. 491.

    Article  Google Scholar 

  4. X. Shi, N. Xie, K. Fortune, and J. Gong: Const. Build. Mater., 2012, vol. 30, p. 125.

    Article  Google Scholar 

  5. M. Moreno, W. Morris, M.G. Alvarez, and G.S. Duffo: Corr. Sci., 2004, vol. 46, p. 2681.

    Article  Google Scholar 

  6. M.B. Valcarce and M. Vázquez: Mater. Chem. Phys., 2006, vol. 115, p. 313.

    Article  Google Scholar 

  7. F. Fei, J. Hu, J. Wei, Q.J. Yu, and Z. Chen: Const. Building Mater., 2014, vol. 70, pp. 43–53.

    Article  Google Scholar 

  8. J. Hu, D. Koleva, J. De Wit, H. Kolev, and K. Van Breugel: J. Electrochem. Soc., 2011, vol. 158, pp. 76–87.

    Article  Google Scholar 

  9. J.J. Assaada and C. Issa: Const. Building Mater., 2012, vol. 30, pp. 667–74.

    Article  Google Scholar 

  10. S.R. Yeomans: Corrosion, 1994, vol. 50, pp. 72–81.

    Article  Google Scholar 

  11. A.M.G. Seneviratne, G. Sergi, and C.L. Page: Constr. Building Mater., 2000, vol. 14, pp. 55–59.

    Article  Google Scholar 

  12. H. Bensabra, N. Azzouz, and J.P. Chopart: Rev. Métall., 2012, vol. 109, pp. 167–75.

    Article  Google Scholar 

  13. T.A. Söylev and M.G. Richardson: Constr. Building Mater., 2008, vol. 22 (4), pp. 609–22.

    Article  Google Scholar 

  14. M. Ormellese, F. Bolzoni, S. Goidanich, M.P. Pedeferri, and A. Brenna: Corros. Eng. Sci. Technol., 2011, vol. 46 (4), pp. 334–39.

    Article  Google Scholar 

  15. W. Morris, A. Vico, and M. Vázquez: J. Appl. Electrochem., 2003, vol. 33, pp. 1183–89.

    Article  Google Scholar 

  16. D.M. Bastidas, M. Criado, V.M. La Iglesia, S. Fajardo, A. La Iglesia, and J.M. Bastidas: Cem. Conc. Comp., 2013, vol. 43, pp. 31–38.

    Article  Google Scholar 

  17. Ha-Won Song and Velu Saraswathy: Met. Mater. Int., 2006, vol. 12 (4) pp. 323–29.

    Article  Google Scholar 

  18. L. Dhouibi, E. Triki, M. Salta, P. Rodrigues, and A. Raharinaivo: Mater. Struct., 2003, vol. 36, pp. 530–40.

    Article  Google Scholar 

  19. J. Shi and W. Sun: Int. J. Miner. Metall. Mater., 2012, vol. 19(1), p. 38.

    Article  Google Scholar 

  20. S. NealBerke and M.C. Hicks: Cem. Concr. Compos., 2004, vol. 26, pp. 191–98.

    Article  Google Scholar 

  21. M. Cabrini, S. Lorenzi, and T. Pastore: Electrochim. Acta, 2014, vol. 124, pp. 156–64.

    Article  Google Scholar 

  22. L. Dhouibi, P. Refait, E. Triki, and J.M.R. Génin: J. Mater. Sci., 2006, vol. 41, pp. 4928–36.

    Article  Google Scholar 

  23. J.T. Hinatsu, W.F. Graydon, and F.R. Foulkes: J. Appl. Electrochem., 1990, vol. 20, pp. 840–47.

    Article  Google Scholar 

  24. O.A. Omotosho, J.O. Okeniyi, and O.O. Ajayi: J. Fail. Anal. Preven., 2010, vol. 10, pp. 408–15.

    Article  Google Scholar 

  25. Yuming Tang, Guodong Zhang, and Yu Zuo: Constr. Building Mater., 2012, vol. 28, pp. 327–32.

    Article  Google Scholar 

  26. C.M. Hansson, L. Mammoliti, and B.B. Hope: Cem. Concr. Res., 1998, vol. 28, pp. 1775–78.

    Article  Google Scholar 

  27. J.J. Shi, M. Saremi, and E. Mahallati: Cem. Concr. Res., 2002, vol. 32, pp. 1915–20.

    Article  Google Scholar 

  28. C. Andrade, M. Keddam, X.R. Nóvoa, M.C. Pérez, C.M. Rangel, and H. Takenouti: Electrochim. Acta, 2001, vol. 46, pp. 3905–12.

    Article  Google Scholar 

  29. S. Joiret, M. Keddam, X.R. Nóvoa, M.C. Pérez, C. Rangel, and H. Takenouti: Cem. Conc. Comp., 2001, vol. 24, pp. 7–15.

    Article  Google Scholar 

  30. Jin-jie Shi and Wei Sun: Int. J. Miner. Metall. Mater., 2012, vol. 19 (1), pp. 8–17.

    Google Scholar 

  31. M.B. Valcarce and M. Vázquez: Electrochim. Acta, 2008, vol. 53 (15), p. 5007.

    Article  Google Scholar 

  32. J.Y. Zhong, M. Sun, D.B. Liu, X.G. Li, and T.Q. Liu: Int. J. Miner. Metall. Mater., 2010, vol. 17, p. 282.

    Article  Google Scholar 

  33. WH Zhang, SW Yang, J Guo, ZY Liu, and XL He: Int. J. Miner. Metall. Mater., 2010, vol. 17(6), p. 748.

    Article  Google Scholar 

  34. M. Nagayama and M. Cohen: J. Electrochem. Soc., 1963, vol. 110, pp. 670–80.

    Article  Google Scholar 

  35. J. Kruger and J.P. Calvert: J. Electrochem. Soc., 1967, vol. 114, pp. 43–49.

    Article  Google Scholar 

  36. T. Yonezawa and V. Ashworth: Corrosion, 1988, Vol. 44, pp. 489–99.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakim Bensabra.

Additional information

Manuscript submitted December 26, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bensabra, H., Franczak, A., Aaboubi, O. et al. Inhibitive Effect of Molybdate Ions on the Electrochemical Behavior of Steel Rebar in Simulated Concrete Pore Solution. Metall Mater Trans A 48, 412–424 (2017). https://doi.org/10.1007/s11661-016-3778-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3778-y

Keywords

Navigation