Metallurgical and Materials Transactions A

, Volume 47, Issue 12, pp 6090–6096 | Cite as

Precipitate Evolution and Creep Behavior of a W-Free Co-based Superalloy

  • Qinyuan Liu
  • James Coakley
  • David N. Seidman
  • David C. Dunand
Article

Abstract

The morphological and temporal evolution of \(\gamma ^{\prime }\) (L1\(_2\))-precipitates is studied in a polycrystalline Co-based superalloy (Co-30Ni-9.9Al-5.1Mo-1.9Nb at. pct) free of tungsten, aged at 1173 K (900 °C). Over a \(1000\,{{\rm{hours}}}\) heat-treatment, the \(\gamma ^{\prime }\) morphology evolves due to precipitate coalescence. The particles grow in size and the volume fraction decreases, while there is no significant change in the microhardness value. Compressional creep tests at 1123 K (850 °C) on a specimen aged at 1173 K (900 °C) demonstrate that the creep resistance is comparable to the original, W-containing, higher-density Co-based superalloy (Co-9Al-9.8W at. pct). This represents the first creep study of the Co-Al-Mo-Nb-based superalloy system. The W-free alloy exhibits directional coarsening of the \(\gamma ^{\prime }\) precipitates in the direction perpendicular to the applied compressive stress, which indicates a positive misfit. This is consistent with neutron diffraction results.

References

  1. 1.
    R.C. Reed: The Superallloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.CrossRefGoogle Scholar
  2. 2.
    C.T. Sims, N.S. Stoloff, and W.C. Hagel: Superalloys II: High-Temperature Materials for Aerospace and Industrial Power, Wiley, New York, 1987.Google Scholar
  3. 3.
    T.M. Pollock and S. Tin: J. Propuls. Power, 2006, vol. 22, pp. 361–74.CrossRefGoogle Scholar
  4. 4.
    E. Nembach and G. Neite: Prog. Mater. Sci., 1985, vol. 29, pp. 177–319.CrossRefGoogle Scholar
  5. 5.
    P. Caron: Superalloys, 9th International Symposium on Superalloys, TMS, 2000, pp. 737–46.Google Scholar
  6. 6.
    V. Deodeshmukh, N. Mu, B. Li, and B. Gleeson: Surf. Coat. Technol., 2006, vol. 201, pp. 3836–40.CrossRefGoogle Scholar
  7. 7.
    A.M. Khan, S. Sundarrajan, S. Nataragan, P. Parameswaran, E. Mohandas: Mater. Manuf. Process., 2014, vol. 29(7), pp. 832–39.CrossRefGoogle Scholar
  8. 8.
    J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Science, 2006, vol. 312, pp. 90–91.CrossRefGoogle Scholar
  9. 9.
    F. Xue, H.J. Zhou, M.L. Wang, X.F. Ding, and Q. Feng: Mater. Lett., 2013, vol. 112, pp. 215–18.CrossRefGoogle Scholar
  10. 10.
    K. Shinagawa, T. Omori, K. Oikawa, R. Kainuma, and K. Ishida: Scripta Mater., 2009, vol. 61, pp. 612–15.CrossRefGoogle Scholar
  11. 11.
    M. Titus, A. Suzuki, and T.M. Pollock: Scripta Mater., 2012, vol. 66, 574–577.CrossRefGoogle Scholar
  12. 12.
    K. Tanaka, M. Ooshima, N. Tsuno, A. Sato, and H. Inui: Phil. Mag., 2012, vol. 92, pp. 4011–27.CrossRefGoogle Scholar
  13. 13.
    M.S. Titus, Y.M. Eggeler, A. Suzuki, and T.M. Pollock: Acta Mater., 2015, vol. 82, pp. 530–39.CrossRefGoogle Scholar
  14. 14.
    H.Y. Yan, V.A. Vorontsov, J. Coakley, N.G. Jones, H.J. Stone, and D. Dye: Superalloys, 12th International Symposium on Superalloys, TMS, 2012, pp. 705–14.Google Scholar
  15. 15.
    L. Klein, M.S. Killian, and S. Virtanen: Corros. Sci., 2013, vol. 69, pp. 43–49.CrossRefGoogle Scholar
  16. 16.
    M. Knop, P. Mulvey, F. Ismail, A. Radecka, K.M. Rahman, T.C. Lindley, B.A. Shollock, M.C. Hardy, M.P. Moody, T.L. Martin, P.A.J. Bagot, and D. Dye: JOM, 2014, vol. 66, pp. 2495–501.CrossRefGoogle Scholar
  17. 17.
    S. Neumeier, H.U. Rehman, J. Neuner, C.H. Zenk, S. Michel, S. Schuwalow, J. Rogal, R. Drautz, and M. Göken: Acta Mater., 2016, vol. 106, pp. 304–12.CrossRefGoogle Scholar
  18. 18.
    A. Suzuki, H. Inui, and T.M. Pollock: Annu. Rev. Mater. Res., 2015, vol. 45, pp. 345–68.CrossRefGoogle Scholar
  19. 19.
    S.K. Makineni, B. Nithin, and K. Chattopadhyay: Scripta Mater., 2015, vol. 98, 36–39.CrossRefGoogle Scholar
  20. 20.
    S.K. Makineni, B. Nithin, and K. Chattopadhyay: Acta Mater., 2015 vol. 85, pp. 85–94.CrossRefGoogle Scholar
  21. 21.
    A. Bauer, S. Neumeier, F. Pyczak, R.F. Singer, and M. Göken: Mater. Sci. Eng. A, 2012, vol. 550, pp. 333–41.CrossRefGoogle Scholar
  22. 22.
    A. Bauer, S. Neumeier, F. Pyczak, and M. Göken: Superalloys 2012: 12th International Symposium on Superalloys, 2012, pp. 695–703Google Scholar
  23. 23.
    F. Xue, H.J. Zhou, Q.Y. Shi, X.H. Chen, H. Chang, M.L. Wang, and Q. Feng: Scripta Mater., 2015, vol. 97, pp. 37–40.CrossRefGoogle Scholar
  24. 24.
    F. Xue, H.J. Zhou, and Q. Feng: JOM, 2014, vol. 66(12), pp. 2486–94.CrossRefGoogle Scholar
  25. 25.
    Y.M. Eggeler, M.S. Titus, A. Suzuki, and T.M. Pollock: Acta Mater., 2014 vol. 77, pp. 352–59.CrossRefGoogle Scholar
  26. 26.
    Y.M. Eggeler, J. Müller, M.S. Titus, A. Suzuki, T.M. Pollock, and E. Spiecker: Acta Mater., 2016, vol. 113, pp. 335–49.CrossRefGoogle Scholar
  27. 27.
    F.R.N. Nabarro: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 513–30.CrossRefGoogle Scholar
  28. 28.
    H. Mughrabi: Acta Mater., 2014, vol. 81, pp. 21–29.CrossRefGoogle Scholar
  29. 29.
    D. Dye, J. Coakley, V.A. Vorontsov, H.J. Stone, and R.B. Rogge: Scripta Mater., 2009, vol. 61, pp. 109–12.CrossRefGoogle Scholar
  30. 30.
    J. Coakley and D. Dye: Scripta Mater., 2012, vol. 67, pp. 435–38CrossRefGoogle Scholar
  31. 31.
    J. Coakley, R.C. Reed, J.L.W. Warwick, K.M. Rahman, and D. Dye: Acta Mater., 2012, vol. 60, pp. 2729–38.CrossRefGoogle Scholar
  32. 32.
    F.J. Radd and L.H. Crowder: Nature, 1958, vol. 181, pp. 258–59.CrossRefGoogle Scholar
  33. 33.
    K. An: ORNL Report, 2012, ORNL-TM-2012-621, pp.1–19Google Scholar
  34. 34.
    D. Hadjiapostolidou and B.A. Shollock: Superalloys, 11th International Symposium on Superalloys, TMS, 2008, pp. 733–39Google Scholar
  35. 35.
    P.K. Footner and B.P. Richards: J. Mater. Sci., 1983, vol. 18, pp. 1896–97.CrossRefGoogle Scholar
  36. 36.
    E.A. Lass, R.D. Grist, and M.E. Williams: J. Phase. Equilib. Diffus., 2016, vol. 37(4), pp. 387–401.CrossRefGoogle Scholar
  37. 37.
    J. Coakley, H. Basoalto, and D. Dye: Acta Mater., 2010, vol. 58, pp. 4019–28.CrossRefGoogle Scholar
  38. 38.
    K. Kakehi: Mater. Sci. Eng A., 2000, vol. 278(1–2), pp. 135–41.CrossRefGoogle Scholar
  39. 39.
    D. Locq, P. Caron, S. Raujol, F. Pettinari-Sturmel, A. Coujou, and N. Clément: Superalloys, 10th International Symposium on Superalloys, TMS, 2004, pp. 179–87.Google Scholar
  40. 40.
    P. Caron and T. Khan: Mater. Sci. Eng., 1983, vol. 61(2), pp. 173–84CrossRefGoogle Scholar
  41. 41.
    U. Tetzlaff and H. Mughrabi: Superalloys, 9th International Symposium on Superalloys, TMS, 2000, pp. 273–82Google Scholar
  42. 42.
    H.Y. Yan, J. Coakley, V.A. Vorontsov, N.G. Jones, H.J. Stone, and D. Dye: Mater. Sci. Eng. A, 2014, vol. 613, pp. 201–08.CrossRefGoogle Scholar
  43. 43.
    F. Pyczak, A. Bauer, M. Göken, U. Lorenz, S. Neumeier, M. Oehring, J. Paul, N. Schell, A. Schreyer, A. Stark, and F. Symanzik: J. Alloys Compd., 2015, vol. 632, pp. 110–15.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Qinyuan Liu
    • 1
  • James Coakley
    • 1
    • 2
  • David N. Seidman
    • 1
    • 3
  • David C. Dunand
    • 1
  1. 1.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK
  3. 3.Northwestern University Center for Atom-Probe Tomography (NUCAPT)EvanstonUSA

Personalised recommendations