Skip to main content
Log in

The Effect of Carbon Additions on the Creep Resistance of Fe-25Al-5Zr Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Creep experiments were conducted on Fe-25 at. pct Al-5 at. pct Zr alloy with carbon additions at the temperatures of 973 K and 1173 K (700 °C and 900 °C). The alloys were tested in two different states: (i) cast and (ii) annealed at 1273 K (1000 °C) for 50 hours. Stress exponents and activation energies were estimated. The values of the stress exponent n could be explained by the dislocation motion controlled by climb. The increased values of n in the high-carbon alloy at the temperature of 1173 K (900 °C) can be described by means of the threshold stress concept. The creep resistance at 973 K (700 °C) decreased with the increasing content of carbon. This result is discussed in terms of the ratio of zirconium to carbon in the alloy. An increase of the creep resistance with increasing ratio Zr:C is in agreement with the behavior observed previously in alloys with substantially lower concentrations of zirconium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Sauthoff: Intermetallics, VCH Verlagsgesellschaft, Weinheim, Germany, 1995, pp. 84-89.

    Book  Google Scholar 

  2. N.S. Stoloff: Mater. Sci. Eng. A, 1998, vol. 258, pp. 1-14.

    Article  Google Scholar 

  3. C.T. Liu, E.P. George, P.J. Maziasz and J.H. Schneibel: Mater. Sci. Eng. A, 1998, vol. 258, pp. 84-98.

    Article  Google Scholar 

  4. M. Yildirim, M.V. Akdeniz and A.O. Mekhrabov: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1809-1816.

    Article  Google Scholar 

  5. D. Janda, H. Fietzek, M. Galetz and M. Heilmaier: Intermetallics, 2013, vol. 41, pp. 51-57.

    Article  Google Scholar 

  6. G. Yang and S. Milenkovic: Intermetallics, 2014, vol. 55, pp. 129–137.

    Article  Google Scholar 

  7. X. Li, P. Prokopčáková and M. Palm: Mater. Sci. Eng. A, 2014, vol. 611, pp. 234-241.

    Article  Google Scholar 

  8. D. Janda, H. Ghassemi-Armaki, E. Bruder, M. Hockauf, M. Heilmaier and K.S. Kumar: Acta Mater., 2016, vol. 103, pp. 909-918.

    Article  Google Scholar 

  9. M. Yildirim, M.V. Akdeniz and A.O. Mekhrabov: Mater. Sci. Eng. A, 2016, vol. 664, pp. 17-25.

    Article  Google Scholar 

  10. P. Prokopčáková, M. Švec and M. Palm: Int. J. Mater. Res., 2016, vol. 107, pp. 396-405.

    Article  Google Scholar 

  11. L. Senčeková, M. Palm, J. Pešička and J. Veselý: Intermetallics, 2016, vol. 73, pp. 58-66.

    Article  Google Scholar 

  12. M. Palm: Intermetallics, 2005, vol. 13, pp. 1286-1295.

    Article  Google Scholar 

  13. D.G. Morris and M.A. Muñoz-Morris: Mater. Sci. Eng. A, 2007, vol. 462, pp. 45-52.

    Article  Google Scholar 

  14. C.G. McKamey, P.J. Maziasz and J.W. Jones: J. Mater. Res., 1992, vol. 7, pp. 2089-2106.

    Article  Google Scholar 

  15. C.G. McKamey, P.J. Maziasz, G.M. Goodwin and T. Zacharia: Mater. Sci. Eng. A, 1994, vol. 174, pp. 59-70.

    Article  Google Scholar 

  16. C.G. McKamey and P.J. Maziasz: Intermetallics, 1998, vol. 6, pp. 303–14.

    Article  Google Scholar 

  17. J.D. Whittenberger, M.V. Nathal and D.J. Gaydosh: Intermetallics, 1994, vol. 2, pp. 193- 200.

    Article  Google Scholar 

  18. T.M. Pollock, D.C. Lu, X. Shi and K. Eow: Mater. Sci. Eng. A, 2001, vol. 317, pp. 241–248.

    Article  Google Scholar 

  19. A. Wasilkowska, M. Bartsch, F. Stein, M. Palm, K. Sztwiertnia, G. Sauthoff, and U. Messerschmidt: Mater. Sci. Eng. A, 2004, vol. 380, pp. 9-19.

    Article  Google Scholar 

  20. A. Wasilkowska, M. Bartsch, F. Stein, M. Palm, G. Sauthoff and U. Messerschmidt: Mater. Sci. Eng. A, 2004, vol. 381, pp. 1-15.

    Article  Google Scholar 

  21. D.G. Morris, M.A. Muñoz-Morris and L.M. Requejo: Acta Mater., 2006, vol. 54, pp. 2335-2341.

    Article  Google Scholar 

  22. D.G. Morris, I. Gutierrez-Urrutia and M.A. Muñoz-Morris: Scripta Mater., 2007, vol. 57, pp. 449-452.

    Article  Google Scholar 

  23. J. Machida, S. Kobayashi, Y. Kaneno and T. Takasugi: Mater. Sci. Forum, 2007, vol. 561-565, pp. 399-402.

    Article  Google Scholar 

  24. M. Cieslar and M. Karlík: Mater. Sci. Eng. A, 2007, vol. 462, pp. 289-293.

    Article  Google Scholar 

  25. P. Kratochvíl, F. Dobeš, J. Pešička, P. Málek, J. Buršík, V. Vodičková and P. Hanus: Mater. Sci. Eng. A, 2012, vol. 548, pp. 175-182.

    Article  Google Scholar 

  26. R.S. Sundar and S.C. Deevi: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2233-2246.

    Article  Google Scholar 

  27. P. Kejzlar, P. Kratochvíl, R. Král and V. Vodičková: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 335-342.

    Article  Google Scholar 

  28. F. Stein, G. Sauthoff and M. Palm: Z. Metallkunde. 2004, vol. 95, pp. 469-485.

    Article  Google Scholar 

  29. F. Stein and M. Palm: Int. J. Mater. Res. 2007, vol. 98, pp. 580–88.

    Article  Google Scholar 

  30. A.K. Mukherjee, J.E. Bird and J.E. Dorn: Trans. ASM, 1969, vol. 62, pp. 155–179.

    Google Scholar 

  31. A. Lawley, J.A. Coll and R.W. Cahn: Trans. Metall. Soc. AIME 1960, vol. 218, pp. 166-176.

    Google Scholar 

  32. J.D. Whittenberger: Mater. Sci. Eng. 1983, vol. 57, pp. 77-85.

    Article  Google Scholar 

  33. J.D. Whittenberger: Mater. Sci. Eng. 1986, vol. 77, pp. 103-113.

    Article  Google Scholar 

  34. M. Eggersmann and H. Mehrer: Philosophical Magazine A, 2000, vol. 80, pp. 1219-1244.

    Article  Google Scholar 

  35. LN Larikov, VV Geichenko, VM Fal’chenko, Diffusion Processes in Ordered Alloys, Amerind Publishing Co., New Delhi, 1981.

    Google Scholar 

  36. M. Palm and G. Inden: Intermetallics, 1995, vol. 3, pp. 443-454.

    Article  Google Scholar 

  37. WD Nix and B Ilschner: In: P. Haasen, V. Gerold and G. Kostorz, (eds) Strength of metals and alloys. Oxford, Pergamon Press, 1980, pp. 1503-1530.

    Google Scholar 

  38. G. Antou, M. Gendre, E. Laborde, A. Maître and G. Trolliard: Mater. Sci. Eng. A, 2014, vol. 612, pp. 326–334.

    Article  Google Scholar 

  39. J.D. Whittenberger: Metall. Trans. A, 1977, vol. 8A, pp, 1155-1163.

    Article  Google Scholar 

Download references

Acknowledgments

The paper is based on work supported by the Czech Science Foundation within the Project 108/12/1452. J.V. and P.K. acknowledge support from the Project 16-05608S of the same foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinand Dobeš.

Additional information

Manuscript submitted March 24, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobeš, F., Vodičková, V., Veselý, J. et al. The Effect of Carbon Additions on the Creep Resistance of Fe-25Al-5Zr Alloy. Metall Mater Trans A 47, 6070–6076 (2016). https://doi.org/10.1007/s11661-016-3770-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3770-6

Keywords

Navigation