Abstract
Lattice deformation and extended defects such as grain boundaries and dislocations affect the crystalline quality of films and can dramatically change material’s properties. In particular, magnetic and optoelectronic properties depend strongly on these structural and substructural characteristics. In this paper, a combined methodology based on SEM, HRTEM, XRD, and HRXRD measurements is used to determine and assess the structural and substructural characteristics of films. This combined methodology has been applied to Zn1−x Mn x Te films grown on glass substrates by close-spaced vacuum sublimation. Nevertheless the methodology can be applied to a wide variety of materials and could become a useful characterization method which would be particularly valuable in semiconductor growth field. The knowledge of the structural and substructural characteristics can allow not only the optimization of growth parameters, but also the selection of specific samples having the desired characteristics (crystallite size, minimum dislocation content, etc.) for high-quality technological devices.
Similar content being viewed by others
References
J. P. Hirth, J. Lothe: Theory of dislocations, McGraw-Hill, New York, 1968.
A.J.C. Wilson: Il Nuovo Cimento, 1955, vol.1, pp. 277–83.
B. E. Warren B.L. Averbach: J. Appl. Phys. 1950, vol. 21, pp. 595–99.
G.K. Williamson, W.H. Hall: Acta Metall. 1953, vol. 1, pp. 22–31.
T. Ungar, A. Borbely: Appl. Phys. Lett. 1996, vol. 69, pp. 3173–75.
Révész A, Ungár T, Borbely A and Lendvai T: J. Nanostruc. Mater. 1988, vol. 7, pp. 779–88.
T. Story: Acta Phys. Pol. A, 1998, vol. 94, pp. 189–97.
D. Ferrand, J. Cibert, A. Wasiela, C. Bourgognon, S. Tatarenko, G. Fishman, T. Andrearczyk, J. Jaroszyński, S. Koleśnik, T. Dietl, B. Barbara, D. Dufeu: Phys. Rev. B, 2001, vol. 63, p. 085201.
H.J. Masterson, J.G. Lunney: Appl. Surf. Sci. 1995, vol. 86, pp. 154–59.
G. Romera-Guereca, J. Lichtenberg, A. Hierlemann, D. Poulikakos, B. Kang: Exp. Therm. Fluid Sci. 2006, vol. 30, 829-36.
D. Zeng, W. Jie, H. Zhou, Y. Yang, Nucl. Instrum. Methods A, 2010, vol. 614, pp. 68–71.
A. Zozime, M. Seibt, J. Ertel, A. Tromson-Carli, R. Druilhe, C. Grattepain, R. Triboulet: J. Cryst. Growth, 2003, vol. 249, pp. 15–22.
[13] J. Huang, L. J. Wang, K. Tang, Run Xu: Phys. Procedia, 2012, vol. 32, pp. 161–64.
G. Kostorz,H. A. Calderon,J. L. Martin: Fundamental Aspects of Dislocation Interactions: Low-Energy Dislocation Structures III (eBook), Elsevier, Kobo Edition, Lausanne, 2013.
D. Kurbatov, A. Opanasyuk, S.M. Duvanov, A.G. Balogh, H. Khlyap: Solid State Sci., 2011, vol. 13, pp. 1068–71.
V. Kosyak, A. Opanasyuk, P.M. Bukivskij, Y.P. Gnatenko: J. Cryst. Growth, 2010, vol. 312, pp. 1726–30.
P. F. Fewster: Rep. Prog. Phys. 1996, vol. 59, pp. 1339–1407.
M. Imamura, T. Yamaguchi: J. Phys. Conf. Ser., 2010, vol. 200, pp. 062009.
R. D. Shannon: Acta Cryst. A, 1976, vol. 32, pp. 751–67.
A. Avdonin, L. Van Khoi, W. Pacuski, V. Domukhovski, R.R. Galazka: Acta Phys. Pol. A, 2007, vol. 112, pp. 407–414.
E. Dynowska, E. Przezdziecka: J. Alloys Compd., 2005, vol. 401, pp. 265–71.
E. Janik, E. Dynowska, J. Bak-Misiuk, M. Leszczyński, W. Szuszkiewicz, T. Wojtowicz, G. Karczewski, A.K. Zakrzewski, J. Kossut: Thin Solid Films, 1995, vol. 267, pp. 74–78.
[23] P. Djemia, Y. Roussign, A. Stashkevich: Acta Phys. Pol., 2004, vol. 106, pp. 239–47.
[24] G.B. Harris: Philos. Mag. 1952, vol. 43, pp. 113–23.
W. Mahmood, N.A. Shah: Curr. Appl. Phys., 2014, vol. 14, pp. 282–86.
C.V. Thompson, R. Carel: Mater. Sci. Eng. B, 1995, vol. 32 pp. 211–19.
E. Mittemeijer, Z.U. Welzel: Kristallogr. 2006, vol. 223, pp. 552–60.
M.A. Krivoglaz: Theory of X-ray and thermal neutron scattering by real crystals, New York: Plenum Press, 1969.
T. Ungár, S. Ott, P.G. Sanders, A. Borbely, J.R. Weertman: Acta Mater. 1998, vol. 46, pp. 3693–99.
T. Ungár: Materials Science Forum, 1998, vol. 278–281, pp. 151–57.
T. Ungar, I. Dragomir-Cernatescu, D. L. Louer, N. Audebrand: J. Phys. Chem. Solids, 2001, vol. 62, pp. 1935–41.
Y. Wang, S.L.I. Chan, R. Amal, Y.R. Shen, K. Kiatkittipong: Adv. X-ray Anal., 2010, vol. 54, pp. 92–100.
B.H. Lee: J. Appl. Phys. 1970, vol. 41, pp. 2984–90.
Y. Nishi, and R. Doering: Handbook of Semiconductor Manufacturing Technology, 2nd ed., CRC Press, Boca Raton, 2007.
T. Ungar, I. Dragomir, A. Revesz, A. Borbely: J. Appl. Cryst. 1999, vol. 32, pp. 992–1002.
M.P.C. Kalita, K. Deka, J. Das, N. Hazarika, P, Dey, R. Das, S. Paul, T. Sarmah, B.K. Sarma: Mater. Lett. 2012, vol. 87, pp. 84–86.
Acknowledgments
The authors are grateful to the Central Support Service in Experimental Research (SCSIE), University of Valencia, Spain for providing SEM, XRD, HRXRD, and HRTEM facility. The authors acknowledge funding received from the Spanish Generalitat Valenciana (Projects Nos. ISIC/2012/008 and PrometeoII/2015-004) and Spanish MINECO (Project No. TEC2014-53727-C2-1-R). This work was also supported by the Ministry of Education and Science of Ukraine (Project No. 0116U006813).
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted September 30, 2015.
Rights and permissions
About this article
Cite this article
Martinez-Tomas, C., Klymov, O., Agouram, S. et al. Substructural Properties and Anisotropic Peak Broadening in Zn1−x Mn x Te Films Determined by a Combined Methodology Based on SEM, HRTEM, XRD, and HRXRD. Metall Mater Trans A 47, 6645–6654 (2016). https://doi.org/10.1007/s11661-016-3762-6
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-016-3762-6