Skip to main content
Log in

Substructural Properties and Anisotropic Peak Broadening in Zn1−x Mn x Te Films Determined by a Combined Methodology Based on SEM, HRTEM, XRD, and HRXRD

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Lattice deformation and extended defects such as grain boundaries and dislocations affect the crystalline quality of films and can dramatically change material’s properties. In particular, magnetic and optoelectronic properties depend strongly on these structural and substructural characteristics. In this paper, a combined methodology based on SEM, HRTEM, XRD, and HRXRD measurements is used to determine and assess the structural and substructural characteristics of films. This combined methodology has been applied to Zn1−x Mn x Te films grown on glass substrates by close-spaced vacuum sublimation. Nevertheless the methodology can be applied to a wide variety of materials and could become a useful characterization method which would be particularly valuable in semiconductor growth field. The knowledge of the structural and substructural characteristics can allow not only the optimization of growth parameters, but also the selection of specific samples having the desired characteristics (crystallite size, minimum dislocation content, etc.) for high-quality technological devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. P. Hirth, J. Lothe: Theory of dislocations, McGraw-Hill, New York, 1968.

    Google Scholar 

  2. A.J.C. Wilson: Il Nuovo Cimento, 1955, vol.1, pp. 277–83.

    Article  Google Scholar 

  3. B. E. Warren B.L. Averbach: J. Appl. Phys. 1950, vol. 21, pp. 595–99.

    Article  Google Scholar 

  4. G.K. Williamson, W.H. Hall: Acta Metall. 1953, vol. 1, pp. 22–31.

    Article  Google Scholar 

  5. T. Ungar, A. Borbely: Appl. Phys. Lett. 1996, vol. 69, pp. 3173–75.

    Article  Google Scholar 

  6. Révész A, Ungár T, Borbely A and Lendvai T: J. Nanostruc. Mater. 1988, vol. 7, pp. 779–88.

    Article  Google Scholar 

  7. T. Story: Acta Phys. Pol. A, 1998, vol. 94, pp. 189–97.

    Article  Google Scholar 

  8. D. Ferrand, J. Cibert, A. Wasiela, C. Bourgognon, S. Tatarenko, G. Fishman, T. Andrearczyk, J. Jaroszyński, S. Koleśnik, T. Dietl, B. Barbara, D. Dufeu: Phys. Rev. B, 2001, vol. 63, p. 085201.

    Article  Google Scholar 

  9. H.J. Masterson, J.G. Lunney: Appl. Surf. Sci. 1995, vol. 86, pp. 154–59.

    Article  Google Scholar 

  10. G. Romera-Guereca, J. Lichtenberg, A. Hierlemann, D. Poulikakos, B. Kang: Exp. Therm. Fluid Sci. 2006, vol. 30, 829-36.

    Article  Google Scholar 

  11. D. Zeng, W. Jie, H. Zhou, Y. Yang, Nucl. Instrum. Methods A, 2010, vol. 614, pp. 68–71.

    Article  Google Scholar 

  12. A. Zozime, M. Seibt, J. Ertel, A. Tromson-Carli, R. Druilhe, C. Grattepain, R. Triboulet: J. Cryst. Growth, 2003, vol. 249, pp. 15–22.

    Article  Google Scholar 

  13. [13] J. Huang, L. J. Wang, K. Tang, Run Xu: Phys. Procedia, 2012, vol. 32, pp. 161–64.

    Article  Google Scholar 

  14. G. Kostorz,H. A. Calderon,J. L. Martin: Fundamental Aspects of Dislocation Interactions: Low-Energy Dislocation Structures III (eBook), Elsevier, Kobo Edition, Lausanne, 2013.

    Google Scholar 

  15. D. Kurbatov, A. Opanasyuk, S.M. Duvanov, A.G. Balogh, H. Khlyap: Solid State Sci., 2011, vol. 13, pp. 1068–71.

    Article  Google Scholar 

  16. V. Kosyak, A. Opanasyuk, P.M. Bukivskij, Y.P. Gnatenko: J. Cryst. Growth, 2010, vol. 312, pp. 1726–30.

    Article  Google Scholar 

  17. P. F. Fewster: Rep. Prog. Phys. 1996, vol. 59, pp. 1339–1407.

    Article  Google Scholar 

  18. M. Imamura, T. Yamaguchi: J. Phys. Conf. Ser., 2010, vol. 200, pp. 062009.

    Article  Google Scholar 

  19. R. D. Shannon: Acta Cryst. A, 1976, vol. 32, pp. 751–67.

    Article  Google Scholar 

  20. A. Avdonin, L. Van Khoi, W. Pacuski, V. Domukhovski, R.R. Galazka: Acta Phys. Pol. A, 2007, vol. 112, pp. 407–414.

    Article  Google Scholar 

  21. E. Dynowska, E. Przezdziecka: J. Alloys Compd., 2005, vol. 401, pp. 265–71.

    Article  Google Scholar 

  22. E. Janik, E. Dynowska, J. Bak-Misiuk, M. Leszczyński, W. Szuszkiewicz, T. Wojtowicz, G. Karczewski, A.K. Zakrzewski, J. Kossut: Thin Solid Films, 1995, vol. 267, pp. 74–78.

    Article  Google Scholar 

  23. [23] P. Djemia, Y. Roussign, A. Stashkevich: Acta Phys. Pol., 2004, vol. 106, pp. 239–47.

    Article  Google Scholar 

  24. [24] G.B. Harris: Philos. Mag. 1952, vol. 43, pp. 113–23.

    Article  Google Scholar 

  25. W. Mahmood, N.A. Shah: Curr. Appl. Phys., 2014, vol. 14, pp. 282–86.

    Article  Google Scholar 

  26. C.V. Thompson, R. Carel: Mater. Sci. Eng. B, 1995, vol. 32 pp. 211–19.

    Article  Google Scholar 

  27. E. Mittemeijer, Z.U. Welzel: Kristallogr. 2006, vol. 223, pp. 552–60.

    Google Scholar 

  28. M.A. Krivoglaz: Theory of X-ray and thermal neutron scattering by real crystals, New York: Plenum Press, 1969.

    Google Scholar 

  29. T. Ungár, S. Ott, P.G. Sanders, A. Borbely, J.R. Weertman: Acta Mater. 1998, vol. 46, pp. 3693–99.

    Article  Google Scholar 

  30. T. Ungár: Materials Science Forum, 1998, vol. 278–281, pp. 151–57.

    Article  Google Scholar 

  31. T. Ungar, I. Dragomir-Cernatescu, D. L. Louer, N. Audebrand: J. Phys. Chem. Solids, 2001, vol. 62, pp. 1935–41.

    Article  Google Scholar 

  32. Y. Wang, S.L.I. Chan, R. Amal, Y.R. Shen, K. Kiatkittipong: Adv. X-ray Anal., 2010, vol. 54, pp. 92–100.

    Google Scholar 

  33. B.H. Lee: J. Appl. Phys. 1970, vol. 41, pp. 2984–90.

    Article  Google Scholar 

  34. Y. Nishi, and R. Doering: Handbook of Semiconductor Manufacturing Technology, 2nd ed., CRC Press, Boca Raton, 2007.

    Google Scholar 

  35. T. Ungar, I. Dragomir, A. Revesz, A. Borbely: J. Appl. Cryst. 1999, vol. 32, pp. 992–1002.

    Article  Google Scholar 

  36. M.P.C. Kalita, K. Deka, J. Das, N. Hazarika, P, Dey, R. Das, S. Paul, T. Sarmah, B.K. Sarma: Mater. Lett. 2012, vol. 87, pp. 84–86.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Central Support Service in Experimental Research (SCSIE), University of Valencia, Spain for providing SEM, XRD, HRXRD, and HRTEM facility. The authors acknowledge funding received from the Spanish Generalitat Valenciana (Projects Nos. ISIC/2012/008 and PrometeoII/2015-004) and Spanish MINECO (Project No. TEC2014-53727-C2-1-R). This work was also supported by the Ministry of Education and Science of Ukraine (Project No. 0116U006813).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Martinez-Tomas.

Additional information

Manuscript submitted September 30, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Tomas, C., Klymov, O., Agouram, S. et al. Substructural Properties and Anisotropic Peak Broadening in Zn1−x Mn x Te Films Determined by a Combined Methodology Based on SEM, HRTEM, XRD, and HRXRD. Metall Mater Trans A 47, 6645–6654 (2016). https://doi.org/10.1007/s11661-016-3762-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3762-6

Keywords

Navigation