Skip to main content

Advertisement

Log in

Impact Toughness Properties of Nickel- and Manganese-Free High Nitrogen Austenitic Stainless Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A large amount of manganese (>10 wt pct) in nickel-free high nitrogen austenitic stainless steels (Ni-free HNASSs) can induce toxicity. In order to develop Ni-free HNASSs with low or no manganese, it is necessary to investigate their mechanical properties for biomedical applications. This work aims to study the Charpy V-notch (CVN) impact toughness properties of a Ni- and Mn-free Fe-22.7Cr-2.4Mo-1.2N HNASS plate in the temperature range of 103 K to 423 K (–170 °C to 150 °C). The results show that unlike conventional AISI 316L austenitic stainless steel, the Ni- and Mn-free HNASS exhibits a sharp ductile-to-brittle transition (DBT). The intergranular brittle fracture associated with some plasticity and deformation bands is observed on the fracture surface at 298 K (25 °C). Electron backscattered diffraction (EBSD) analysis of the impact-tested sample in the longitudinal direction indicates that deformation bands are parallel to {111} slip planes. By decreasing the temperature to 273 K, 263 K, and 103 K (0 °C, –10 °C, and –70 °C), entirely intergranular brittle fracture occurs on the fracture surface. The fracture mode changes from brittle fracture to ductile as the temperature increases to 423 K (150 °C). The decrease in impact toughness is discussed on the basis of temperature sensitivity of plastic flow and planarity of deformation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. V.G. Gavriljuk and H. Berns: High Nitrogen Steels—Structure, Properties, Applications, Springer, Berlin, 1999, p. 135.

    Google Scholar 

  2. R. Presser and J.M. Silcock: Met. Sci., 1983, vol. 17, pp. 241–47.

    Article  Google Scholar 

  3. A.H. Bott, F.B. Pickering, and G.J. Butterworth: J. Nucl. Mater., 1986, vols. 141–143, pp. 1088–96.

    Article  Google Scholar 

  4. S. Degallaix, J. Foct, and A. Hendry: Mater. Sci. Technol., 1986, vol. 2, pp. 946–50.

    Article  Google Scholar 

  5. G. Stein, I. Hucklenbroich, and M. Wagner: Mater. Sci. Forum, 1999, vols. 318–320, pp. 167–74.

    Article  Google Scholar 

  6. G. Stein, I. Hucklenbroich, and H. Feichtinger: Mater. Sci. Forum, 1999, vols. 318–320, pp. 261–70.

    Google Scholar 

  7. D.J. Gawkrodger: Contact Derm., 1996, vol. 35 (5), pp. 267–71.

    Article  Google Scholar 

  8. T.P. Coogan, D.M. Latta, E.T. Snow, and M. Costa: CRC Cr. Rev. Toxicol., 1989, vol. 19 (4), pp. 341–84.

    Article  Google Scholar 

  9. M. Cramers and U. Lucht: Acta Orthop. Scand., 1977, vol. 48, pp. 245–49.

    Article  Google Scholar 

  10. C.L. Kelin, P. Nieder, M. Wanger, H. Kohler, F. Bittingerr, C.J. Kirkpatrick, and J.C. Lewis: J. Mater. Sci.: Mater. Med., 1994, vol. 5, pp. 798–807.

  11. P.J. Uggowitzer, R. Magdowski, and M.O. Speidel: ISIJ Int., 1996, vol. 36, pp. 901–08.

    Article  Google Scholar 

  12. M. Sumita, T. Hanawa, and S.H. Teoh: Mater. Sci. Eng., C, 2004, vol. 24, pp. 753–60.

    Article  Google Scholar 

  13. M. Talha, C.K. Behera, and O.P. Sinha: Mater. Sci. Eng., C, 2013, vol. 33, pp. 3563–75.

    Article  Google Scholar 

  14. R.J. Brigham and E.W. Tozer: Corrosion, 1976, vol. 32 (7), pp. 274–77.

    Article  Google Scholar 

  15. E. Lunarska, Z. Szklarska-Smialowska, and M. Janik-Czachor: Corrosion, 1975, vol. 31 (7), pp. 231–34.

    Article  Google Scholar 

  16. H. Baba, T. Kodama, and Y. Katada: Corros. Sci., 2002, vol. 44, pp. 2393–2407.

    Article  Google Scholar 

  17. Y.S. Lim, J.S. Kim, S.J. Ahn, H.S Kwona, and Y. Katada: Corros. Sci., 2001, vol. 43, pp. 53–61.

    Article  Google Scholar 

  18. I. Toor: J. Chem., 2014, vol. 2014, pp. 1–8.

    Article  Google Scholar 

  19. H. Li, Z. Jiang, Z. Zhang, and Y. Yang: J. Iron Steel Res. Int., 2009, vol. 16 (1), pp. 58–61.

    Article  Google Scholar 

  20. N. Maruyama, M. Sanbe, Y. Katada, and K. Kanazawa: Mater. Trans., 2009, vol. 50 (11), pp. 2615–22.

    Article  Google Scholar 

  21. X. Wu, Y. Fu, J. Huang, E. Han, W. Ke, K. Yang, and Z. Jiang: J. Mater. Eng. Perform., 2009, vol. 18 (3), pp. 287–98.

    Article  Google Scholar 

  22. L. Montanaro, M. Cervellati, D. Campoccia, and C.R. Arciola: J. Mater. Sci.: Mater. Med., 2006, vol. 17, pp. 267–75.

  23. P. Saravanan and V.S. Raja: Int. J. Mater. Phys. Chem., 2015, vol. 1 (2), pp. 212–19.

    Google Scholar 

  24. D. Kuroda, T. Hanawa, T. Hibarua, and T. Kobayashi: Mater. Trans., 2003, vol. 44 (3), pp. 414–20.

    Article  Google Scholar 

  25. R. Mohammadzadeh and A. Akbari: Mater. Sci. Eng., A, 2014, vol. 592, pp. 153–63.

    Article  Google Scholar 

  26. R. Mohammadzadeh and A. Akbari: Mater. Charact., 2014, vol. 93, pp. 119–28.

    Article  Google Scholar 

  27. A. Akbari and R. Mohammadzadeh: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 1570–79.

    Article  Google Scholar 

  28. B.D. Cullity: Elements of X-Ray Diffraction, Addison-Wesley Publishing Company, Inc., MA, 1956, p. 338.

    Google Scholar 

  29. R.L. Tobler and D. Meyn: Metall. Trans. A, 1988, vol. 19A, pp. 1626–31.

    Article  Google Scholar 

  30. P. Müllner, C. Solenthaler, P.J. Uggowitzer, and M.O. Speidel: Acta Metall. Mater., 1994, vol. 42, pp. 2211–17.

    Article  Google Scholar 

  31. P. Müllner: Mater. Sci. Eng., A, 1997, vols. 234–236, pp. 94–97.

  32. Y. Tomota, J. Nakano, Y. Xia, and K. Inoue: Acta Mater., 1998, vol. 46, pp. 3099–3108.

    Article  Google Scholar 

  33. Y. Tomota, Y. Xia, and K. Inoue: Acta Mater., 1998, vol. 46, pp. 1577–87

    Article  Google Scholar 

  34. S.C. Liu, T. Hashida, H. Takashi, H. Kuwano, and Y. Hamaguchi: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 791–98.

    Article  Google Scholar 

  35. W. Wang, S. Wang, K. Yang, and Y. Shan: Mater. Des., 2009, vol. 30, pp. 1822–24.

    Article  Google Scholar 

  36. Y. Tomota and S. Endo: ISIJ Int., 1990, vol. 30, pp. 656–62.

    Article  Google Scholar 

  37. M. Tanaka, T. Onomoto, T. Tsuchiyama, and K. Higashida: ISIJ Int., 2012, vol. 52, pp. 915–21

    Article  Google Scholar 

  38. D.A. Canonico, W.J. Stelzman, R.C. Bercgren, and R.K. Nanstad: Weld. Res. Suppl., 1981, pp. 85–91.

  39. A.C.T.M. Van Zwieten and J.H. Bulloch: Int. J. Pres. Ves. Piping, 1993, vol. 56, pp. 1–31.

    Article  Google Scholar 

  40. M.O. Speidel and M. Zheng-Cui: 2003–High Nitrogen Steels, M.O. Speidel, C. Kowanda, and M. Diener, eds., HNS Schaffhausen, Switzerland, Institute of Metallurgy ETH Zürich, Zürich, 2003, pp. 63–73.

  41. G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw-Hill, New York, NY, 1986, p. 477.

    Google Scholar 

  42. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 3rd ed., Wiley, New York, NY, 1989, p. 263.

    Google Scholar 

  43. M.A. Meyer and K.K. Chawla: Mechanical Behavior of Materials, Prentice Hall, NJ, 1998.

    Google Scholar 

  44. K.J. lrvine, T. Gladman, and P.B. Pickering: J. Iron Steel Inst., 1969, vol. 199, pp. 1017–28.

  45. R.L. Fleischer: in The Strengthening of Metals, D. Peckner, ed., Reinhold Publ. Co., New York, NY, 1964, p. 93.

  46. V.G. Gavriljuk: ISIJ Int., 1996, vol. 36 (7), pp. 738–45.

    Article  Google Scholar 

  47. M.L.G. Byrnes, M. Grujicic, and W.S. Owen: Acta Metall., 1987, vol. 35 (7), pp. 1853–62.

    Article  Google Scholar 

  48. W.S. Owen: Int. Conf. High Nitrogen Steels, Stahl & Eisen, Aachen, Germany, 1990, p. 42.

  49. M. Byrnes, M. Grujicic, and S. Owen: Acta Metall., 1987, vol. 35, pp. 1853–62.

    Article  Google Scholar 

  50. M. Grujicic and W.S. Owen: Acta Metall. Mater., 1995, vol. 43, pp. 4201–11.

    Article  Google Scholar 

  51. F. Pickering: Physical Metallurgical Development of Stainless Steels, Proc. Conf. Stainless Steels, Institute of Metals, London, 1985, p. 2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roghayeh Mohammadzadeh.

Additional information

Manuscript submitted April 16, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh, R., Akbari, A. & Mohammadzadeh, M. Impact Toughness Properties of Nickel- and Manganese-Free High Nitrogen Austenitic Stainless Steels. Metall Mater Trans A 47, 6032–6041 (2016). https://doi.org/10.1007/s11661-016-3742-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3742-x

Keywords

Navigation