Skip to main content

Advertisement

Log in

Deformation Behavior in Medium Mn Steel of Nanometer-Sized α′ + γ Lamellar Structure

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Yielding and work-hardening phenomena in an Fe-10.62Mn-2.84Al-0.17C-0.5Mo steel, which is composed of nanometer-sized lamellae of α′ and γ, are described on the basis of the Hall–Petch relations. Unlike the general expectation, yielding in the steel, which consists of lamellae of α′ and mechanically stable γ, occurs through the propagation of pileup dislocations from α′ to γ. However, when γ is mechanically unstable, yielding occurs through the stress-assisted martensitic transformation (SAMT) within the unstable γ region, resulting in a low YS of about 500 MPa. The overall prominent work-hardening behavior of this steel after yielding is due to the active SAMT, which does not accompany the increase in mobile dislocation density and so causes the high elastic strain rate. The carbon partitioning treatment increases the SAMT starting strength to about 980 MPa, which is caused by the mechanical stabilization of γ. The overall low work-hardening behavior of this case is mainly attributed to the active propagation of pile-up dislocation from α′ to γ which causes the high plastic strain rate through the abrupt increase of mobile dislocation density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. M. Rashid: Ann. Rev. Mater. Sci., 1981, vol. 11, pp. 245–66.

    Article  Google Scholar 

  2. Z.H. Jiang, Z.Z. Guan, and J.S. Lian: Mater. Sci. Eng. A, 1995, vol. 190, pp. 55–64.

    Article  Google Scholar 

  3. R. Davies: Metall. Trans. A, 1978, vol. 9A, pp. 671–79.

    Article  Google Scholar 

  4. L.F. Ramos, D.K. Matlock, and G. Krauss: Metall. Mater. Trans. A, 1979, vol. 10A, pp. 259–61.

    Article  Google Scholar 

  5. G. Tither and M. Lavite: J. Metall., 1975, vol. 27, pp. 15–23.

    Google Scholar 

  6. P. Movahed, S. Kolahgar, S. Marashi, M. Pouranvari, and N. Parvin: Mater. Sci. Eng. A, 2009, vol. 518, pp. 1–6.

    Article  Google Scholar 

  7. U. Liedl, S. Traint, and E. Werner: Comput. Mater. Sci., 2002, vol. 25, pp. 122–28.

    Article  Google Scholar 

  8. N. Balliger and T. Gladman: Met. Sci., 1981, vol. 15, pp. 95–108.

    Article  Google Scholar 

  9. J.H. Chung, J.B. Jeon, and Y.W. Chang: Metall. Mater. Int., 2010, vol. 16, pp. 533–41.

    Article  Google Scholar 

  10. O. Bouaziz, S. Allain, C. Scott, P. Cugy, and D. Barbier: Curr. Opin. Solid State Mater. Sci., 2011, vol. 15, pp. 141–68.

    Article  Google Scholar 

  11. L. Rémy and A. Pineau: Mater. Sci. Eng., 1976, vol. 26, pp. 123–32.

    Article  Google Scholar 

  12. A. Saeed-Akbari: Mechanism Maps, Mechanical Properties, and Flow Behavior in High-Manganese TRIP/TWIP and TWIP Steels, Shaker Verlag, Aachen, 2011.

    Google Scholar 

  13. A. Saeed-Akbari, L. Mosecker, A. Schwedt, and W. Bleck: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1688–1704.

    Article  Google Scholar 

  14. A. Saeed-Akbari, A. Schwedt, and W. Bleck: Scripta Mater., 2012, vol. 66, pp. 1024–29.

    Article  Google Scholar 

  15. L. Rémy and A. Pineau: Mater. Sci. Eng., 1977, vol. 28, pp. 99–107.

    Article  Google Scholar 

  16. S. Curtze and V.-T. Kuokkala: Acta Mater., 2010, vol. 58, pp. 5129–41.

    Article  Google Scholar 

  17. T.H. Lee, E.J. Shin, H.Y. Ha, C.S. Oh, and S.-J. Kim: Acta Mater., 2010, vol. 58, pp. 3173–86.

    Article  Google Scholar 

  18. K.-T. Park, G. Kim, S.-K. Kim, S.W. Lee, S.W. Hwang, and C.S. Lee: Metall. Mater. Int., 2010, vol. 16, pp. 1–6.

    Article  Google Scholar 

  19. B. Cullity and S. Stock: Elements of X-Ray Diffraction, 3rd ed., Prentice-Hall, NJ, 2001, pp. 363–84.

    Google Scholar 

  20. Y. Guo, Z. Li, C. Yao, K. Zhang, F. Lu, K. Feng, J. Huang, M. Wang, and Y. Wu: Mater. Des., 2014, vol. 63, pp. 100–08.

    Article  Google Scholar 

  21. D. Dyson and B. Holmes: J. Iron Steel Inst., 1970, vol. 208, pp. 469–74.

    Google Scholar 

  22. Y.-U. Heo, M. Takeguchi, K. Furuya, and H.-C. Lee: Acta Mater., 2009, vol. 57, pp. 1176-87.

    Article  Google Scholar 

  23. Y.-U. Heo, D.-W. Suh, and H.-C. Lee: Acta Mater., 2014, vol. 77, pp. 236–47.

    Article  Google Scholar 

  24. A.J. Bogers and W.G. Burgers: Acta Metall., 1964, vol. 12, pp. 255–61.

    Article  Google Scholar 

  25. W. Sylwestrowicz and E.O Hall: Proc. Phys. Soc., 1951, vol. B64, pp. 495–502.

  26. N.H. Heo, Y.-U. Heo, and S.-J. Kim: ISIJ Int., 2016, vol. 56, pp. 1096–1101.

    Google Scholar 

  27. J. Benito, J. Jorba, J. Manero, and A. Roca: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3317–24.

    Article  Google Scholar 

  28. H. Ledbetter and S. Kim: Mater. Sci. Eng. A, 1988, vol. 101, pp. 87–92.

    Google Scholar 

  29. H. Conrad, S. Feuerstein, and L. Rice: Mater. Sci. Eng., 1967, vol. 2, pp. 157–68.

    Article  Google Scholar 

  30. D.T. Narutani and J. Takamura: Acta Metall., 1991, vol. 39, pp. 2037–49.

    Article  Google Scholar 

  31. M. Etou, S. Fukushima, T. Sasaki, Y. Haraguchi, K. Miyata, M. Wakita, T. Tomida, N. Imai, M. Yoshida, and Y. Okada: ISIJ Int., 2008, vol. 48, pp. 1142–47.

    Article  Google Scholar 

  32. R. Armstrong, I. Codd, R.M. Douthwaite, and N.J. Petch: Phil. Mag., 1962, vol. 7, pp. 45–58.

    Article  Google Scholar 

  33. M.J. Roberts: Metall. Trans., 1970, vol. 1, pp. 3287–94.

    Google Scholar 

  34. Y. Xiaoyun, C. Liqing, Z. Yang, D. Hongshuang, and Z. Fuxian: Proc. Eng., 2014, vol. 81, pp. 143–48.

    Article  Google Scholar 

  35. D. Music, T. Takahashi, L. Vitos, C. Asker Göransson, I.A. Abrikosov, and J.M. Schneider: Appl. Phys. Lett., 2007, vol. 91, p. 191904.

    Article  Google Scholar 

  36. H. Zhang, M.P. Punkkinen, B. Johansson, S. Hertzman, and L. Vitos: Phys. Rev. B, 2010, vol. 81, p. 184105.

    Article  Google Scholar 

  37. J.W. Morris Jr., Z. Guo, C.R. Krenn, and Y.-H. Kim: ISIJ Int., 2001, vol. 41, pp. 599–611.

    Article  Google Scholar 

  38. A.N. Stroh: Proc. R. Soc. London, 1954, vol. 223, pp. 404–14.

    Article  Google Scholar 

  39. E. Smith and J.T. Barnby: Met. Sci., 1967, vol. 1, pp. 56–64.

    Article  Google Scholar 

  40. R.E. Reed-Hill: Physical Metallurgy Principles, 3rd ed., PWS Publishing Company, Boston, MA, 1992, pp. 660–61.

    Google Scholar 

Download references

Acknowledgments

The authors thank Professor Hu-Chul Lee, Department of Materials Science and Engineering, Seoul National University, for the helpful discussion. This work was partially supported by the Technology Development Projects (Project Nos. 4.0010820.01 and 4.0012004.01) from POSCO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Hoe Heo.

Additional information

Manuscript submitted December 14, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, YU., Kim, D.H., Heo, N.H. et al. Deformation Behavior in Medium Mn Steel of Nanometer-Sized α′ + γ Lamellar Structure. Metall Mater Trans A 47, 6004–6016 (2016). https://doi.org/10.1007/s11661-016-3728-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3728-8

Keywords

Navigation