Metallurgical and Materials Transactions A

, Volume 48, Issue 6, pp 2730–2738 | Cite as

Simulation Study of Heterogeneous Nucleation at Grain Boundaries During the Austenite-Ferrite Phase Transformation: Comparing the Classical Model with the Multi-Phase Field Nudged Elastic Band Method

  • Huajing SongEmail author
  • Rongpei ShiEmail author
  • Yunzhi Wang
  • Jeffrey J. Hoyt
Symposium: PTM 2015: Solid-Solid Phase Transformations in Inorganic Materials


In this work, molecular dynamics (MD) simulations have been used to study the heterogeneous nucleation occurring at grain boundaries (GBs) during the austenite (FCC) phase to ferrite (BCC) phase transformation in a pure Fe polycrystalline system. The critical nucleus properties (including size, shape, and activation energy) determined by classical nucleation theory are compared with those obtained by using a combination of the multi-phase field method (MPFM) and the nudged elastic band (NEB) method. For nucleation events that exhibit low-energy facets completely embedded within the parent FCC phase, there is a good agreement between the MD and the MPFM result with respect to the critical nucleus size, shape, and nucleation energy barrier. For systems where the emerging nucleus contains facets that cross the GB plane, the MPFM-NEB, when compared to MD, yields a better prediction than the classical approach for the nucleus morphology. New observations from the MPFM-NEB method indicate that the critical nucleus shape may change with volume and therefore depends on the nucleation driving force (undercooling).


Molecular Dynamic Simulation Interfacial Energy Critical Nucleus Classical Nucleation Theory Nucleus Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the support of a Natural Sciences and Engineering Research Council (Canada) Strategic Project grant entitled “Simulation of complex microstructure path way for alloy design” and the computing resources of the Shared Hierarchical Academic Research Computing Network (Sharcnet) of Ontario. We gratefully acknowledge numerous helpful discussions with Dr. Gary Purdy and Dr. Hatem S. Zurob. H. Song acknowledges financial support from a Natural Sciences and Engineering Research Council of Canada postgraduate doctoral Scholarship (NSERC PGS-D). R. Shi and Y. Wang also would like to acknowledge financial support from the National Science Foundation under the DMREF program with Grant No. DMR-1435483.


  1. 1.
    P. Clemm, J. Fisher, Acta Metall. 3, 70–73 (1955)CrossRefGoogle Scholar
  2. 2.
    W. Lange, M. Enomoto, H. Aaronson, Metall. Mater. Trans. A. 19A, 427–40 (1988)CrossRefGoogle Scholar
  3. 3.
    M. Plichta, J. Perepezko, H. Aaronson, W. Lange III, Acta Metall. 28, 1031–40 (1980)CrossRefGoogle Scholar
  4. 4.
    J. Lee, H. Aaronson, Acta Metall. 23, 799–808 (1975)CrossRefGoogle Scholar
  5. 5.
    T. Nagano, M. Enomoto, Metall. Mater. Trans. A. 37A, 929–37 (2006)CrossRefGoogle Scholar
  6. 6.
    J. Lee, H. Aaronson, Acta Metall. 23, 809–20 (1975)CrossRefGoogle Scholar
  7. 7.
    J. Lee, H. Aaronson, Surf. Sci. 47, 692–96 (1975)CrossRefGoogle Scholar
  8. 8.
    H. Bunge, L. Wcislak, H. Klein, U. Garbe, J. Schneider, J. Appl. Cryst. 36, 1240–55 (2003)CrossRefGoogle Scholar
  9. 9.
    J. Jonas, Y. He, S. Godet, Scr. Mater. 52, 175–79 (2005)CrossRefGoogle Scholar
  10. 10.
    S. Zaefferer, J. Ohlert, W. Bleck, Acta Mater. 52, 2765–78 (2004)CrossRefGoogle Scholar
  11. 11.
    F. Abraham, Homogeneous Nucleation Theory: The Pretransition Theory of Vapor Condensation, 1st edn. (Elsevier Inc., Amsterdam, 2012), p. 263Google Scholar
  12. 12.
    L. Ickes, A. Welti, C. Hoose, U. Lohmann, Phys. Chem. Chem. Phys. 17, 5514–37 (2015)CrossRefGoogle Scholar
  13. 13.
    P.G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, Princeton, NJ, 1996), p. 411Google Scholar
  14. 14.
    S.E. Offerman, N.H. van Dijk, J. Sietsma, S. Grigull, E.M. Lauridsen, L. Margulies, H.F. Poulsen, MTh Rekveldt, S. van der Zwaag, Science 298, 1003–05 (2002)CrossRefGoogle Scholar
  15. 15.
    M. Enomoto, J. Yang, Metall. Mater. Trans. A. 39A, 994–1002 (2008)CrossRefGoogle Scholar
  16. 16.
    S. Auer, D. Frenkel, J. Chem. Phys. 120, 3015–29 (2004)CrossRefGoogle Scholar
  17. 17.
    F. Cherne, M. Baskes, R. Schwarz, S. Srinivasan, W. Klein, Model. Simul. Mater. Sci. Eng. 12, 1063–68 (2004)CrossRefGoogle Scholar
  18. 18.
    R. Aga, J. Morris, J. Hoyt, M. Mendelev, Phys. Rev. Lett. 96, 245701–04 (2006)CrossRefGoogle Scholar
  19. 19.
    P. ten Wolde, M. Ruiz-Montero, D. Frenkel, J. Chem. Phys. 104, 9932–47 (1996)CrossRefGoogle Scholar
  20. 20.
    H. Song, J. Hoyt, Comp. Mater. Sci. 117, 151–63 (2016)CrossRefGoogle Scholar
  21. 21.
    H. Song, J. Hoyt, Model. Simul. Mater. Sci. Eng. 23, 085012–20 (2015)CrossRefGoogle Scholar
  22. 22.
    H. Song, J. Hoyt: to be published, 2016, pp. 5Google Scholar
  23. 23.
    R. Shi, Y. Wang, Proc. Int. Conf. Solid-Solid Phase Transf. Inorg. Mater. 2015, 837–44 (2015)Google Scholar
  24. 24.
    G. Ackland, D. Bacon, A. Calder, T. Harry, Philos. Mag. A. 75, 713–32 (1997)CrossRefGoogle Scholar
  25. 25.
    S. Plimpton, J. Comp. Phys. 117, 1–19 (1995)CrossRefGoogle Scholar
  26. 26.
    LAMMPS, Sandia National Laboratories (
  27. 27.
    R. Zucker, D. Chatain, U. Dahmen, S. Hagege, W. Carter, J. Mater. Sci. 47, 8290 (2012)CrossRefGoogle Scholar
  28. 28.
    W. Winterbottom, Acta Metall. 15, 303–10 (1967)CrossRefGoogle Scholar
  29. 29.
    j. Lee, H. Aaronson: Lectures on the Theory of Phase Transformations, 2nd ed., TMS., 1999, pp. 165-229Google Scholar
  30. 30.
    I. Steinbach, Model. Simul. Mater. Sci. Eng. 17, 073001–31 (2009)CrossRefGoogle Scholar
  31. 31.
    H. Song, J. Hoyt, Acta Mate. 60, 4328–35 (2012)CrossRefGoogle Scholar
  32. 32.
    R. Shi, N. Ma, Y. Wang, Acta Mater. 60, 4172–84 (2012)CrossRefGoogle Scholar
  33. 33.
    N. Ma, Q. Chen, Y. Wang, Scr. Mater. 54, 1919–24 (2006)CrossRefGoogle Scholar
  34. 34.
    M. Fleck, L. Mushongera, D. Pilipenko, K. Ankit, H. Emmerich, Eur. Phys. J. Plus 126, 1–11 (2011)CrossRefGoogle Scholar
  35. 35.
    C. Herring: Structure and Properties of Solid Surfaces, R. Gomer, C. Smith, ed., University of Chicago Press., IL, 1953, pp. 5-73Google Scholar
  36. 36.
    W. Guo, R. Spatschek, I. Steinbach, Phys. D 240, 382–388 (2011)CrossRefGoogle Scholar
  37. 37.
    H. Jónsson, G. Mills, K. Jacobsen: Classical and Quantum Dynamics in Condensed Phase Simulations, B. Berne, G. Ciccotti, D. Coker, ed., World Scientific Ltd., Singapore,1998, p. 385CrossRefGoogle Scholar
  38. 38.
    C. Shen, J. Li, Y. Wang, Metal. Trans. A. 39, 976–83 (2007)CrossRefGoogle Scholar
  39. 39.
    T. Zhu, J. Li, A. Samanta, H.G. Kim, S. Suresh, Proc. Natl Acad. Sci. 104, 3031–36 (2007)CrossRefGoogle Scholar
  40. 40.
    J. van der Merwe, G. Shiflet, Acta Mater. 42, 1199–1205 (1994)CrossRefGoogle Scholar
  41. 41.
    G. Shiflet, J. van der Merwe, Acta Mater. 42, 1189–98 (1994)CrossRefGoogle Scholar
  42. 42.
    E. Johnson, A. Johansen, U. Dahmen, S. Chen, T. Fujii, Mater. Sci. Eng. A. 304–306, 187–93 (2001)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering McMaster UniversityHamiltonCanada
  2. 2.Department of Materials Science and EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations