Metallurgical and Materials Transactions A

, Volume 47, Issue 10, pp 5146–5158 | Cite as

Thermal Stability Study from Room Temperature to 1273 K (1000 °C) in Magnesium Silicide

  • Eleni-Chrysanthi StefanakiEmail author
  • Euripides Hatzikraniotis
  • George Vourlias
  • Konstantinos Chrissafis
  • George Kitis
  • Konstantinos M. Paraskevopoulos
  • George S. Polymeris


Doped magnesium silicide has been identified as a promising and environmentally friendly advanced thermoelectric material in the temperature range between 500 K and 800 K (227 °C and 527 °C). Besides the plethora of magnesium silicide thermoelectric advantages, it is well known for its high sensitivity to oxidation. Oxidation is one of the primary instability mechanisms of degradation of high-temperature Mg2Si thermoelectric devices, as in the presence of O2, Mg2Si decomposes to form MgO and Si. In this work, commercial magnesium silicide in bulk form was used for thermal stability study from room temperature to 1273 K (1000 °C). Various techniques such as DTA-TG, PXRD, and FTIR have been applied. Moreover, the application of thermoluminescence (TL) as an effective and alternative probe for the study of oxidation and decomposition has been exploited. The latter provides qualitative but very helpful hints toward oxidation studies. The low-detection threshold of thermoluminescence, in conjunction with the chemical composition of the oxidation byproducts, consisting of MgO, Mg2SiO4, and SiO2, constitute two powerful motivations for further investigating its viable use as proxy for instability/decomposition studies of magnesium silicide. The partial oxidation reaction has been adopted due to the experimental fact that magnesium silicide is monitored throughout the heating temperature range of the present study. Finally, the role of silicon dioxide to the decomposition procedure, being in amorphous state and gradually crystallizing, has been highlighted for the first time in the literature. Mg2Si oxidation takes place in two steps, including a mild oxidation process with temperature threshold of 573 K (300 °C) and an abrupt one after 773 K (500 °C). Implications on the optimum operational temperature range for practical thermoelectric (TE) applications have also been briefly discussed.


Forsterite Mg2SiO4 Glow Curve PXRD Pattern Glow Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Dr. Eleni Theodosoglou for the valuable comments and contribution to the semi-quantitative PXRD analysis.


  1. 1.
    S. Scherrer, H. Scherrer: CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, 1995, 19-1.Google Scholar
  2. 2.
    D.M. Rowe: AIP Conference Proceedings 1449 (Proceedings on the 9th European Conference on Thermoelectrics), 2012, pp. 485–92.Google Scholar
  3. 3.
    F. J. DiSalvo: Science, 1999, vol. 285, pp. 703‐706.CrossRefGoogle Scholar
  4. 4.
    L. E. Bell: Science, 2008, vol. 321, pp. 1457‐1461.CrossRefGoogle Scholar
  5. 5.
    L.D. Zhao, S. Hao, S.H. Lo, C.I. Wu, X. Zhou, Y. Le, et al.: J. Am. Chem. Soc., 2013, vol. 135, pp. 7364–7370.CrossRefGoogle Scholar
  6. 6.
    M. Brignone, A. Ziggiotti.: AIP Conference Proceedings 1449 (Proceedings on the 9th European Conference on Thermoelectrics), 2012 pp. 493–96.Google Scholar
  7. 7.
    X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, et al.: Appl. Phys. Lett., 2008, vol. 93, pp.193121.CrossRefGoogle Scholar
  8. 8.
    M. Martín-González, O. Caballero-Calero, P.Díaz-Chao: Rene. Sust. Energ., 2013, vol. 24, pp. 288.CrossRefGoogle Scholar
  9. 9.
    Y. Noda, H. Kon, Y. Furukawa, N. Otsuka, I.A. Nishida, K. Masumoto: Mater. Trans. JIM, 1992, vol. 33, pp. 845.CrossRefGoogle Scholar
  10. 10.
    J. Tani, H. Kido: Physica B, 2005, vol. 364, pp. 218–224.CrossRefGoogle Scholar
  11. 11.
    C.R. Whitsett, G.C. Danielson: Phys.Rev., 1955, vol. 100, pp.1261.Google Scholar
  12. 12.
    R.G. Morris, R.D. Redin, G.C. Danielson: Phys. Rev., 1958, vol. 109, pp. 1909–1915.CrossRefGoogle Scholar
  13. 13.
    R.J. La Botz, D.R. Mason, D.F.O’Kane : J. Electrochem. Soc., 1963, vol. 110, pp. 127.CrossRefGoogle Scholar
  14. 14.
    P.M. Lee: Phys. Rev., 1964, vol. 135, pp.1110.CrossRefGoogle Scholar
  15. 15.
    T.C. Harman, P.J. Taylor, D.L. Spears, M.P. Walsh: J. Electron. Mater, 2000, vol. 29, pp. L1-L2.CrossRefGoogle Scholar
  16. 16.
    V.K. Zaitsev, M.I. Fedorov, I.S. Eremin, and E.A. Gurieva: in Thermoelectric Handbook, Macro to Nano, D. M. Rowe, ed., CRC Taylor & Francis, 2006Google Scholar
  17. 17.
    M. Baleva, G. Zlateva, A. Atanassov, M. Abrashev and E. Goranova: Phys. Rev. B, 2005, vol. 72, pp. 115330.CrossRefGoogle Scholar
  18. 18.
    V. K. Zaitsev, M. I. Fedorov, E. A. Gurieva, I. S. Eremin, P. P. Konstantinov, A.Y. Samunin, and M. V. Vedernikov: Phys Rev B, 2006, vol. 74, pp.045207 – 045211.CrossRefGoogle Scholar
  19. 19.
    M. Ioannou, G. S. Polymeris, E. Hatzikraniotis, K. M. Paraskevopoulos, Th. Kyratsi: J. Phys. Chem. Solids, 2014, vol. 75, pp. 984.CrossRefGoogle Scholar
  20. 20.
    J. Tani, M. Takahashi and H. Kido: J Alloys Compd, 2009, vol.488 (1), pp. 346-349.CrossRefGoogle Scholar
  21. 21.
    M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, N. Hamada: J. of Appl. Phys., 2008, vol. 104, pp. 013703.CrossRefGoogle Scholar
  22. 22.
    M. Ioannou, G. Polymeris, E. Hatzikraniotis, A. U. Khan, K. M. Paraskevopoulos, Th. Kyratsi: J. Electron. Mater., 2013, vol. 42, pp.1827.CrossRefGoogle Scholar
  23. 23.
    K. Yin, Q. Zhang, Y. Zheng, X. Su, X. Tang, C Uher: J. Mater. Chem. C, 2013, vol. 3, pp.10381-10387.CrossRefGoogle Scholar
  24. 24.
    D. R. Brown, T. Day, T. Caillat and G. J. Snyder: J. Electron. Mater., 2013, vol. 42, pp. 2014‐2019.CrossRefGoogle Scholar
  25. 25.
    V.M Borshchev, A.N. Dyachenko, A.D. Kiselev, and R.I. Kraidenko : Russ. J. Appl. Chem., 2013, vol. 86(4), pp. 493–7.Google Scholar
  26. 26.
    J. Bourgeois, J. Tobola, B. Wiendlocha, L. Chaput, P. Zwolenski, D. Berthebaud, F. Gascoin, Q. Recour and H. Scherrer: Funct Mater Lett, 2013, vol. 06, p. 1340005.CrossRefGoogle Scholar
  27. 27.
    G. Skomedal, N. R. Kristiansen, M. Engvoll and H. Middleton: J. Electron. Mater, 2013, vol. 43, pp. 1946‐1951.CrossRefGoogle Scholar
  28. 28.
    D. Stathokostopoulos, D. Chaliampalias, E. Pavlidou, K. M. Paraskevopoulos, K. Chrissafis, G. Vourlias : J Therm. Anal. Calorim., 2015, vol. 121, pp. 169-175.CrossRefGoogle Scholar
  29. 29.
    D. Stathokostopoulos, D. Chaliampalias, E. Stefanaki, G. Polymeris, E. Pavlidou, K. Chrissafis, E. Hatzikraniotis, K. Paraskevopoulos, G. Vourlias: Appl. Surf. Sci., 2013, vol. 285, pp. 417–24.CrossRefGoogle Scholar
  30. 30.
    J.A. Nieto: Luminescence Dosimetry Theory and Applications, Ediciones Tecnico Cientificas SA de CV, Mexico, 1990.Google Scholar
  31. 31.
    S.W.S. McKeever: Nucl. Instrum. Methods B, 2011, vol. 184, pp.29–54.CrossRefGoogle Scholar
  32. 32.
    M.J. Aitken: Thermoluminescence Dating, Cambridge University Press, London, 1985.Google Scholar
  33. 33.
    M.J. Aitken: An introduction to Optical Dating, Oxford University Press, London, 1998Google Scholar
  34. 34.
    I.K Bailiff: Radiat. Meas., 1994, vol. 23, pp. 471–79.Google Scholar
  35. 35.
    E.H. Haskell: Radiat. Prot. Dosim., 1993, vol. 47(1–4),pp. 297–303.Google Scholar
  36. 36.
    E.H. Haskell, I.K. Bailiff: Nucl. Tracks Radiat. Meas., 1958, vol. 10, pp. 503–508.CrossRefGoogle Scholar
  37. 37.
    E.H. Haskell, I.K. Bailiff: Radiat. Prot. Dosim., 1990, vol. 34, pp. 195–197.Google Scholar
  38. 38.
    S.W.S. McKeever: Thermoluminescence of Solids, Cambridge University Press, Cambridge, 1985.CrossRefGoogle Scholar
  39. 39.
    P.D. Townsend, M. Maghrabi and B. Yang: Nucl. Instrum. Methods B, 2002, vol. 191, pp. 767–71.CrossRefGoogle Scholar
  40. 40.
    G.S. Polymeris, O.M. Goudouri, E. Kontonasaki, K.M. Paraskevopoulos, N.C. Tsirliganis, G. Kitis: J. Phys. D: Appl. Phys., 2011, vol. 44, pp. 395501–08.CrossRefGoogle Scholar
  41. 41.
    H.P. Klug and L.E. Alexander: X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, Wiley, 1974.Google Scholar
  42. 42.
    G. Kitis, N.G. Kiyak, G.S. Polymeris: Nucl. Instrum. Meth. B, 2015, vol. 359, pp. 60–63.CrossRefGoogle Scholar
  43. 43.
    M.L. Chithambo, P. Niyonzima: J. Lumin., 2014, vol. 155, pp. 70 - 78.CrossRefGoogle Scholar
  44. 44.
    A.D. Franklin, J.R. Prescott, R.B. Scholefield.: J. Lumin.,1995, vol. 63, pp. 317–26.CrossRefGoogle Scholar
  45. 45.
    G.S. Polymeris, D. Afouxenidis, N.C. Tsirliganis and G. Kitis: Radiat. Meas., 2009, vol. 44, pp. 23–31.CrossRefGoogle Scholar
  46. 46.
    F. Preusser, M.L. Chithambo, T. Götte, M. Martini, K. Ramseyer, E.J. Sendezera, J. Susino, and A.G. Wintle: Earth Sci. Rev., 2009, 97, pp. 184.Google Scholar
  47. 47.
    G.A. Wagner: Age determination of young rocks and artifacts: physical andchemical clocks in quaternary geology and archaeology, Springer-Verlag, BerlinHeidelberg,1998CrossRefGoogle Scholar
  48. 48.
    A.G. Wintle: Radiat. Meas., 1997, vol. 27, pp. 769–817.CrossRefGoogle Scholar
  49. 49.
    M.R. Krbetschek, J. Gotze, A. Dietrich, T. Trautmann.: Radiat. Meas., 1997, vol. 27, pp. 695 – 748.CrossRefGoogle Scholar
  50. 50.
    A. Galli, G. Poldi, M. Martini, E. Sibilia, C. Montanari, L. Panzeri : Appl. Phys. A, 2006, vol. 83, pp. 675 – 679.CrossRefGoogle Scholar
  51. 51.
    A. Galli, M. Martini, E. Sibilia, M. Vandini, I. Villa: Eur. Phys. J Plus, 2011, vol. 126, pp. 121 – 132.CrossRefGoogle Scholar
  52. 52.
    C. Aydas, U. RabiaYuce, B. Engin, G.S. Polymeris: Radiat. Meas., 2016, vol. 85, pp. 78-87.CrossRefGoogle Scholar
  53. 53.
    F.A. Balogun, F.O. Ogundare, M.K. Fasasi: Nucl. Inst. Method., 2003, vol. 505, pp. 407-410.CrossRefGoogle Scholar
  54. 54.
    C. Bootjomchai, R. Laopaiboon: Nucl. Instr. Meth. B, 2014, vol. 323, pp. 42-48.CrossRefGoogle Scholar
  55. 55.
    L.V.E. Caldas, M.I. Teixeira: Radiat. Prot. Dosim., 2002, vol. 101, pp. 149–52.CrossRefGoogle Scholar
  56. 56.
    M.I. Teixeira, Z.M. Da Costa, C.R. Da Costa, W.M. Pontuschka, W.M., L.V.E. Caldas: Radiat. Meas., 2008, vol. 43, pp. 480-82.CrossRefGoogle Scholar
  57. 57.
    N. Zacharias, K. Beltsios, Ar. Oikonomou, A.G. Karydas, V. Aravantinos, Y. Bassiakos: J. Non-Cryst. Solids, 2008, vol. 354, pp.761–767.CrossRefGoogle Scholar
  58. 58.
    N. Zacharias, K. Beltsios, A. Oikonomou, A.G. Karydas, Y. Bassiakos, C.T. Michael, Ch. Zarkadas: Opt. Mater., 2008, vol. 30, pp. 1127–1133.CrossRefGoogle Scholar
  59. 59.
    I. K. Sfamba, G. S. Polymeris, G. Kitis, N. Zacharias, J. Henderson: Mediterr. Archaeol. Ar., 2013, vol. 13, pp. 63 –69Google Scholar
  60. 60.
    K. Ayyangar, A.R.Lakshmanan, Bhuwan Chandra, K. Ramdas: Phys. Med. Biol., 1974, vol. 19, pp. 665.CrossRefGoogle Scholar
  61. 61.
    J.S. Sun and K. Becker: Health Phys., 1975, vol. 28, pp. 459.Google Scholar
  62. 62.
    B.D. Bhasin, R. Sasidharan, C.M. Sunta: Health Phys., 1976, vol. 30, pp. 139-142.CrossRefGoogle Scholar
  63. 63.
    A.R. Lakshmanan, K.G.Vohra: Nucl. Instrum. Meth., 1979, vol. 159, pp. 585.CrossRefGoogle Scholar
  64. 64.
    M. Prokic, E. Yukihara: Rad. Meas., 2008, vol. 43, pp. 463.CrossRefGoogle Scholar
  65. 65.
    J.C.Mittani, M. Prokic, E.G.Yukihara: Radiat. Meas., 2008, vol. 43, pp. 323-326.CrossRefGoogle Scholar
  66. 66.
    E.M. Yoshimura, E.G. Yukihara: Nucl Instrum. Meth. Phys.Res. B, 2006, vol. 250, pp. 337-341.CrossRefGoogle Scholar
  67. 67.
    S. Watanabe, T.K. Gundu Rao, B.C. Bhatt, A. Soni, G.S. Polymeris, M.S. Kulkarni: Appl. Radiat. Isot., 2016. DOI  10.1016/j.apradiso.2016.05.029
  68. 68.
    D.M. Roessler, W.C. Walker: Phys. Rev.,1967, vol. 159, pp.733.CrossRefGoogle Scholar
  69. 69.
    V.R. Orante-Barron, L.C. Oliveira, J.B. Kelly, E.D. Milliken, G. Denis, L.G. Jacobsohn, J. Puckette, E.G. Yukihara: J. Lumin., 2011, vol. 131, pp. 1058 – 1065.CrossRefGoogle Scholar
  70. 70.
    M.N. Bapat, S. Sivaraman, K.S.V. Nambi Indian J. Pure: Appl. Phys., 1985, vol. 23, pp. 558.Google Scholar
  71. 71.
    S. Dolgov, T. Kärner, A. Luschik, A. Maaroos, N. Mironova-Ulmane, S. Nakonechnyi: Radiat. Prot. Dosim., 2002, vol. 100, pp. 127.CrossRefGoogle Scholar
  72. 72.
    A.J.J. Bos, M. Prokić, J.C. Brouwer: Radiat. Prot. Dosim., 2006, vol. 119, pp. 130.CrossRefGoogle Scholar
  73. 73.
    W.C. Las, T.G. Stoebe: Radiat. Prot. Dosim., 1984, vol. 8, pp. 45-67.Google Scholar
  74. 74.
    A.C. Carter: Nature, 1976, vol. 260, pp. 133.CrossRefGoogle Scholar
  75. 75.
    N. Takeuchi, K. Inabe, J. Yamashita, S. Nakamura: Health Phys., 1976, vol. 31, pp. 519.Google Scholar
  76. 76.
    S.W.S. McKeever, M. Moscovitch, P.D. Townsend: Thermoluminescence Dosimetry Materials: Properties and Uses, Nuclear Technology Publishing, 1995.Google Scholar
  77. 77.
    A. Sathyamoorthy, J.M. Luthra: J.Mater. Sci., 1978, vol. 13, pp. 2637.CrossRefGoogle Scholar
  78. 78.
    J.M. Luthra, A. Sathyamoorthy, N.M. Gupta: J.Lum. 1977, vol. 15, pp. 395.CrossRefGoogle Scholar
  79. 79.
    A. Kadari, D. Kadri: Physica B, 2010, vol. 405, pp. 4713–4717.CrossRefGoogle Scholar
  80. 80.
    G. Polymeris, G. Kitis, V. Pagonis: Radiat. Meas., 2006, vol. 41, pp. 554–564.CrossRefGoogle Scholar
  81. 81.
    G.S. Polymeris, E.O. Oniya, N.N. Jibiri, N.C. Tsirliganis, G. Kitis: Nucl. Instrum. Meth. B, 2012, vol. 274, pp. 105–110.CrossRefGoogle Scholar
  82. 82.
    S. Music, N. Filipovi -Vincekovic and L. Sekovanic: Braz. J. Chem. Eng., 2011, vol. 28, pp. 89-94.Google Scholar
  83. 83.
    M. Baleva, G. Zlateva, A. Atanassov, M. Abrashev, E. Goranova: Phys. Rev. B, 2005, vol. 72, pp. 115330.CrossRefGoogle Scholar
  84. 84.
    D. McWilliams, D.W. Lynch: Phys. Rev., 1963, vol. 130, pp. 2248–2252.CrossRefGoogle Scholar
  85. 85.
    M. Ioannou, E. Hatzikraniotis, C. Lioutas, T. Hassapis, T. Altantzis, K. M. Paraskevopoulos, T. Kyratsi: Powder Technol., 2012, vol. 217, pp. 523–532.CrossRefGoogle Scholar
  86. 86.
    A.M. Hofmeister, E. Keppel, A.K. Speck: Mon. Not. R. Astron. Soc., 2012, vol. 345, pp. 16–38.CrossRefGoogle Scholar
  87. 87.
    S. Y. Wang, S. K. Sharma and T. F. Cooney: Am Mineral., 1993, vol. 78(5-6), pp. 469-476.Google Scholar
  88. 88.
    G. Lucovsky, M.J. Manitini, J.K. Srivastava, E.A. Irene: J. Vac. Sci. Technol. B, 1987, vol. 5, pp. 530.CrossRefGoogle Scholar
  89. 89.
    R.S. Yu, K. Ito, K. Hirata, K. Sato, W. Zheng, Y. Kobayashi: Chem Phys Lett, 2003, vol. 379, pp. 359–363CrossRefGoogle Scholar
  90. 90.
    A.-M. Putz, M. V Putz: Int. J. Mol. Sci., 2012, vol. 13, pp. 15925–41.Google Scholar
  91. 91.
    S.A. Mikhail, P.E. King: J Therm. Anal., 1999, vol. 40, pp. 79–84.CrossRefGoogle Scholar
  92. 92.
    T.C. Hasapis, E.C. Stefanaki, A. Siozios, E. Hatzikraniotis, G. Vourlias, P. Patsalas, K.M. Paraskevopoulos: Materials Research Society Symposium Proceedings, 2012, vol.1325, pp. 23-28.Google Scholar
  93. 93.
    G.S. Polymeris, N.G. Kiyak, D.K. Koul, G. Kitis: Archaeometry, 2014, vol.56(5), pp. 805 – 817.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Eleni-Chrysanthi Stefanaki
    • 1
    Email author
  • Euripides Hatzikraniotis
    • 1
  • George Vourlias
    • 1
  • Konstantinos Chrissafis
    • 1
  • George Kitis
    • 2
  • Konstantinos M. Paraskevopoulos
    • 1
  • George S. Polymeris
    • 3
  1. 1.Solid State Physics Section, Physics DepartmentAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Nuclear Physics Laboratory, Physics DepartmentAristotle University of ThessalonikiThessalonikiGreece
  3. 3.Institute of Nuclear SciencesAnkara University (AU – INS)BesevlerTurkey

Personalised recommendations